Statistical

CREST

LYT
?????

ay.o, IP PARIS

In this paper |2| we study the properties of the kernel Kullback-
Leibler divergence (KKL), introduced in [1], with the aim of per-
forming sampling by using the divergence as the objective of an
optimisation problem. Our contributions are to propose a regular-
ized version of the KKL, which is consistent for empirical measures
and to derive a Wasserstein gradient of the KKL which has enabled
to implement a sampling algorithm.

Introduction and motivations

Problem: To approximate a target distribution ¢ on R?, we solve the
optimization problem

[ min F(p) j

peX (RY)

where F(p)

= D(p||q) with D a divergence or a distance.

Wasserstein gradient flow:

. If for any function h : R — R?% ¢ > 0, the expansion
.7:((]4 =+ €h>#p) = .7:(]?) + 6<VW2]:(]?), h>p + 0(6),
holds, then Vi, F(p) : R — R¢ is the Wasserstein gradient of F.
» Analogy between gradient flow and Wasserstein gradient flow

f Gradient Flow

$x(0) = x,

2'(t) = =V f(z(t)).

( Wasserstein Gradient Flow
§ P(0) = po,

Oip(t) = =V, F(p(t)).

The choice of D dictates the overall dynamics. In this project we
selected the regularized Kernel Kullback Leibler Divergence.

Kernel Kullback Leibler divergence (KKL)

Kernel Kullback Leibler divergence (KKL): Given H a
RKHS with reproducing kernel k. For p < ¢q, the KKL divergence
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KKL(p[lg) :=

%= [ k(@

If k2 and Vo € RY, k(z,x) = 1 then
KKL(pllg) = 0 p =g

Tr|Y,(log ), — log ¥,)]

where

x)"dp(x).

Regularized KKL : To handle cases where p < ¢, the regularized
KKL is defined for a €]0, 1| as

[ KKLa(p || g) :== KKL(p || (1 — a)q + ap) J

Closed form for regularized KKL on empirical

distributions
Regularized KKL for empirical distributions: Let
T1,.o. Ty ~ D, Y1,...,Yn and note p = %2?21(5% and § = %Z?@:ﬁ%.

Regularized KKL admits a closed form expression

(1]{ o8 K, ) T (I,K log(K)
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KKLa(p]|q) =

and Kﬁ i (k(x%x]))@] 1> K (k<y27y]))23 1 Kﬁ,QA — (k(x%y]»:ﬁ}ﬂ;l

Wasserstein gradient for empirical measures:

Vi (p)(z) =V, (S(ZU)TQ(Kﬁ)S(f) — T(x) g(K)T(x) —
where S(x) = (\}k(az i), \/k‘ T, 2;))i, ( \Fk (z,y;))

and A is a matrix dependmg on the elgenvalues and eigenvectors of K

Theorical properties of the regularized KKL

 The regularized KKL is consistant to the true KKL for p < ¢ when
a — 0:
KKLa(pllg) —

%

KKL(pllq).

« o — KKL,(pl|q) is decreasing.
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= Consistency of the regularized KKL for empirical measures:
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The following experiments illustrate the previous theorical results.
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Sampling experiments

Now we fix ¢, we optimize p by a discretisation of the Wasserstein
oradient flow of the regularized KKL.

Descent scheme: Let p; = %2?21 O, v >0,t=1,..,T.

* Ty = 2 — YV F (Pr)(x) — R

ot = (L= YV F(B0) s A
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