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Linear Stochastic Approximation
> Given A € R?%? and b € RY, we aim at finding 8* € R?, which is a
solution of
A0* =b.
» Our analysis is based on noisy observations {(A(Z,),b(Z,))} nen-
Here A : Z — R9*9 b:Z — RY are measurable mappings.

LSA algorithm, Robbins and Monro [1951]
For a sequence of step sizes {a}, and initialization 6, consider the

sequences of estimates {0, }nen, {én}n22 given by

Ok = Ok—1 — o {A(Zk)0k—1 — b(ZK)}, k>1,
2n—1

G_n:n_lzﬁk, n>2.
k=n

[.I.D. Noise

Sequence {Zk}ken is an i.i.d. sequence taking values in a state space
(Z, Z) with distribution 7 satisfying E[A(Z1)] = A and E[b(Z;)] = b;

We write Ay instead of A(Zx), and by instead of b(Zy), respectively.

2/10



Normal approximation

CLT

Under appropriate conditions on the step sizes {a }ken and noisy
observations {A(Zk)}ken, it is known that

(@, — 0*) % N (0,5,
where ¥, is the asymptotic covariance matrix, see e.g. Fort [2015].
Berry-Esseen bounds
Our aim is to obtain the non-asymptotic type bounds for

Conv .__
pro™ = sup
BeConv(R9)

P(v/n(f, — 6*) € B) — P(TXn € B)| ,

where 17 ~ N(0,14), and Conv(RY) is a set of convex sets in RY.
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Linear Stochastic Approximation

> Let {Zx}ken be an i.i.d.sequence and consider the recurrence
Ok = Ok—1 — ax{A(Zi)0k—1 — b(Zk)}

> Set

and introduce

e(z) = A(2)0* —b(z), Z.=E[g(2)(2)7].
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Assumptions
Assumption Al

> Sequence {Z,}qen is a sequence of i.i.d. random variables defined on a
probability space (2, F,P) with distribution .

» [t holds that

Ca = sup |A(2)] v sup A(2)]| < o0
zeZ zeZ

and —A is Hurwitz. Moreover,

/A( Y (z) = /b 2)dr(z) =B, [le]loo = sup|le(z)]] < +oo.
z zeZ

» For the noise covariance matrix
v = / e(2)e(z)Tdn(2) 2)

z

it holds that its smallest eigenvalue is bounded away from 0, that is,

Amin 1= /\m;n(ZE) >0. (3)
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Normal approximation for LSA-PR

Theorem (Rates of normal approximation for LSA)

Assume Al, let o = co/k7, v € [1/2;1), and let n be large enough.
Then the following bound holds:

Conv < d*|le]2 cpan* Y 2
S /\3/2\/500—’—)\,“," XPY — 2(1—7) 60 — 6%

CQ C3
+ Amin n<1 v)/2 + Aminnt =7 + Aminn¥/2 (4)

where Cy, Gy, G3, G4 are problem-specific constants.
Setting here oy, = co/Vk, we obtain that
pSe™ < nm M4 4 Agexp{—coay/n}||flo — 0] .

Comparison

> Srikant [2024] considers TD learning with Markov noise and obtained
Conv < ,—1/8.
pn ~ n iz
> Anastasiou et al. [2019] consider smooth Wasserstein distance and

obtained dx(v/n(@, — 6%),Y) < n1/6. 6/10



Multiplier bootstrap for LSA

» We aim to provide confidence intervals for \/n(f, — #*) without
directly estimating the asymptotic covariance matrix ¥ ., following
Fang et al. [2018];

> Let W2 = {We}1<e<2n - i.i.d. random variables, independent of
Z2n = {Zg}lgzggn, where E[Wl] = 1, Var[Wl] = 1;
> We write P> = P(-|22") and EP = E(-|22"). Generate M independent

samples (w’, ..., ern), 1 < ¢ < M and consider M recursively updated

perturbed LSA estimates

00" =025y — auwi{A(ZOS —B(Z)}Y s kZn+1, 03" =0,
2n—1

Bl S 0 a1
k=n

We further use a short notation % for °1.
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Multiplier Bootstrap validity

Theorem (Bootstrap validity for LSA)

Assume Al, let o = co/\/E, and let n be large enough. Then with P —
probability at least 1 — 6/n it holds that

sup |P*(v/n(8; — ) € B) — P(V/n(f, — 0*) € B)|
BeConv(RY)
~ Gslogn CeV/dlogn N Cre(0/2)avn
~ >\minnl/4 /\min\/E Amin

where Cs, Cg, C7 are problem-specific constants.

160 — 67|
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Thank you!
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