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Linear Stochastic Approximation
▶ Given Ā ∈ Rd×d and b̄ ∈ Rd , we aim at finding θ⋆ ∈ Rd , which is a

solution of
Āθ⋆ = b̄ .

▶ Our analysis is based on noisy observations {(A(Zn),b(Zn))}n∈N.
Here A : Z → Rd×d , b : Z → Rd are measurable mappings.

LSA algorithm, Robbins and Monro [1951]

For a sequence of step sizes {αk}, and initialization θ0, consider the
sequences of estimates {θn}n∈N, {θ̄n}n≥2 given by

θk = θk−1 − αk{A(Zk)θk−1 − b(Zk)} , k ≥ 1,

θ̄n = n−1
2n−1∑
k=n

θk , n ≥ 2 .

I.I.D. Noise

Sequence {Zk}k∈N is an i.i.d. sequence taking values in a state space
(Z,Z) with distribution π satisfying E[A(Z1)] = Ā and E[b(Z1)] = b̄;

We write Ak instead of A(Zk), and bk instead of b(Zk), respectively.
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Normal approximation

CLT

Under appropriate conditions on the step sizes {αk}k∈N and noisy
observations {A(Zk)}k∈N, it is known that

√
n(θ̄n − θ⋆)

d→ N (0,Σ∞) ,

where Σ∞ is the asymptotic covariance matrix, see e.g. Fort [2015].

Berry-Esseen bounds

Our aim is to obtain the non-asymptotic type bounds for

ρConvn := sup
B∈Conv(Rd )

∣∣∣P(√n(θ̄n − θ⋆) ∈ B
)
− P(Σ1/2

∞ η ∈ B)
∣∣∣ ,

where η ∼ N (0, Id), and Conv(Rd) is a set of convex sets in Rd .
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Linear Stochastic Approximation

▶ Let {Zk}k∈N be an i.i.d.sequence and consider the recurrence

θk = θk−1 − αk{A(Zk)θk−1 − b(Zk)} (1)

▶ Set
Ã(z) = A(z)− Ā , b̃(z) = b(z)− b̄ ,

and introduce

ε(z) = A(z)θ⋆ − b(z) , Σε = E[ε(Z )ε(Z )⊤] .
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Assumptions

Assumption A1
▶ Sequence {Zn}n∈N is a sequence of i.i.d. random variables defined on a

probability space (Ω,F ,P) with distribution π.

▶ It holds that

CA = sup
z∈Z

∥A(z)∥ ∨ sup
z∈Z

∥Ã(z)∥ < ∞

and −Ā is Hurwitz. Moreover,∫
Z

A(z)dπ(z) = Ā,

∫
Z

b(z)dπ(z) = b̄, ∥ε∥∞ = sup
z∈Z

∥ε(z)∥ < +∞ .

▶ For the noise covariance matrix

Σε =

∫
Z

ε(z)ε(z)⊤dπ(z) (2)

it holds that its smallest eigenvalue is bounded away from 0, that is,

λmin := λmin(Σε) > 0 . (3)
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Normal approximation for LSA-PR

Theorem (Rates of normal approximation for LSA)

Assume A1, let αk = c0/k
γ , γ ∈ [1/2; 1), and let n be large enough.

Then the following bound holds:

ρConvn ≲ d1/2∥ε∥3
∞

λ
3/2
min

√
n

+ C4

λmin
exp

{
− c0an

1−γ

2(1−γ)

}
∥θ0 − θ⋆∥

+ C1

λminn(1−γ)/2 +
C2

λminn1−γ + C3

λminnγ/2 , (4)

where C1, C2, C3, C4 are problem-specific constants.

Setting here αk = c0/
√
k , we obtain that

ρConvn ≲ n−1/4 +∆1 exp
{
−c0a

√
n
}
∥θ0 − θ⋆∥ .

Comparison
▶ Srikant [2024] considers TD learning with Markov noise and obtained

ρConvn ≲ n−1/8;

▶ Anastasiou et al. [2019] consider smooth Wasserstein distance and
obtained dK (

√
n(θ̄n − θ⋆),Y ) ≲ n−1/6. 6 / 10



Multiplier bootstrap for LSA

▶ We aim to provide confidence intervals for
√
n(θ̄n − θ⋆) without

directly estimating the asymptotic covariance matrix Σ∞, following
Fang et al. [2018];

▶ Let W2n = {Wℓ}1≤ℓ≤2n - i.i.d. random variables, independent of
Z2n = {Zℓ}1≤ℓ≤2n, where E[W1] = 1, Var[W1] = 1;

▶ We write Pb = P(·|Z2n) and Eb = E(·|Z2n). Generate M independent
samples (w ℓ

n , . . . ,w
ℓ
2n), 1 ≤ ℓ ≤ M and consider M recursively updated

perturbed LSA estimates

θb,ℓk = θb,ℓk−1 − αkw
ℓ
k{A(Zk)θ

b,ℓ
k−1 − b(Zk)} , k ≥ n + 1 , θb,ℓn = θn ,

θ̄b,ℓn = n−1
2n−1∑
k=n

θb,ℓk , n ≥ 1 .

We further use a short notation θ̄bn for θ̄b,1n .
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Multiplier Bootstrap validity

Theorem (Bootstrap validity for LSA)

Assume A1, let αk = c0/
√
k, and let n be large enough. Then with P –

probability at least 1− 6/n it holds that

sup
B∈Conv(Rd )

|Pb(
√
n(θ̄bn − θ̄n) ∈ B)− P(

√
n(θ̄n − θ⋆) ∈ B)|

≲
C5 log n

λminn1/4
+

C6

√
d log n

λmin
√
n

+
C7e

−(c0/2)a
√
n

λmin
∥θ0 − θ⋆∥

where C5,C6,C7 are problem-specific constants.
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Thank you!
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