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[. INTRODUCTION

Problem: Diffusion models generate images by progressively
denoising a random noise x, ~ N(0,0(T)*) to its corre-
sponding clean image with a probabilistic ODE:

der = —co(t)o(t)V logp(x;o(t))dt, (1)

where o(t) is a predefined schedule. In practice the score
function V_, log p(x; o(t)) is approximated by:

Vaelogp(x;o(t)) = (Dg(w;0(t)) —x)/o(t)?,  (2)

where Dy(x;0(t)) is a deep network with parameters 6
trained with the denoising score matching objective:

LD, E~N(0,0(8)2T) | Do(x +€;0(t)) — 'T/‘H%- (3)
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Since we don’t have access to the ground truth p,.; .., in practice
the denoising score matching (3) is instead performed on a fi-
nite number of training samples. Suppose the training dataset
contains a finite number ot data points y, ¥, ..., Y, a natural
way to model the data distribution is to model it as a multi-
delta distribution p(z) = ~ Zf\;  0(x — y;). In this case, the
optimal denoiser takes the form:

27];11 N(w;yiaa(t)2I)yi
> N(@;y;, 0(t)2I)

, which is essentially a softmax-weighted combination of the
finite data points. However, such optimal denoisers can only
generate exact replicas of the training samples, therefore have
no generalizability. In this work, we aim to understand what
kind of function is learned by the D4(x; o(t)) in practice.
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II. EMERGING LINEARITY IN DIFFUISON MODELS

It is well-known that Diffusion models transition from memo-
rization to generalization as the training dataset size increases.
Interestingly, we observe that this transition is accompanied
by an emerging linearity of D,(x;0(t)), as shown in Fig-
ure 1. Here the generalization score (GL Score) is defined as
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of x, in the dataset Y and the linearity is measured by comput-

, where NN denotes the nearest neighbor
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ing the cosine similarity between D,(ax, + Bx,;0(t)) and
aDg(xy;0(t)) + BDg(xe;0(1)).
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Figure 1: Diffusion models exhibit increasing linearity as they
transition from memorization to generalization.

This emerging linearity motivates us to ask two questions: (i)
to what extend can a diffusion model be approximated by a
linear model and (ii) if diffusion models can be approximated
linearly, what are the underlying characteristics of this linear
approximation?

II1I. THE GAUSSIAN INDUCTIVE BIAS

To address these questions, we propose to investigate the linear
properties of diffusion models by finding their best linear
approximations (with a bias term) D (x;0(t)) :== W, @ +
b, for a given diffusion denoiser Dy (x;0(t)). Here W,
and b, ;) can be learned by solving the following optimization
problem with gradient descent

mMinyy,

a(t) ’ba(t) Ewwpdata,sNN(O,a(t)2I) ”WG(t) (w+€)+ba(t)_$9(w;a(t)) H% (5)

After obtaining the linear denosiers, we can compare the
differences between them and the actual diffusion denoisers
Dy(x; 0(t)) with the score approximation error defined as:

. |Dg(®;0(t)-D 1, (@;0(t))|3
Score—leference(t)::Ewdiata,sNN(O,J(t)21>\/ 0 L 2, (6)

The results are shown in Figure 2, from which we observe the
linear models generate samples that closely match those from
the actual diffusion models, which highlights the important
role of diffusion models’ linear structure. Furthermore, the
linear denoisers D, (x; o(t)) is nearly identical to D - (x; o (t))
with the following form:

Dg(®;0(t) = u+ UA, (U (x — u), (7)

where u = + Z y.,, X =UAU' are the mean and Co-
variance of the tralnmg dataset respectively, and Ag(t) =
A(A + o (t)2D) .
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Figure 2: Score approximation error and sampling Trajectory..

Importantly, D (x; o(t)) is the optimal solution to (3) under
the assumption that pg,.. () = N (u, X)), i.e., a Multivariate
Gaussian distribution. Our results demonstrate that diffusion
models in practice have the inductive bias towards learning
denoisers that are similar to the optimal denoisers under the
Gaussian data assumption. We term this inductive bias as the
Gaussian inductive bias.

IV. WHEN DOES THE INDUCTIVE BIAS EMERGES?

Interestingly, the Gaussian inductive bias is most pronounced
when the model capacity is relatively small and during the
early training iterations. As illustrated in Figure 3, diffusion
models generalize if we use a model with small capacity or
applying early stopping. In such cases, the final generated
images match those generated from the Gaussian denoisers
Dea(x;0(t)).
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Figure 3: Small model capacity and early stopping prompt gen-
eralization of diffusion models
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