Unscrambling disease progression at scale:

fast inference of event permutations with

optimal transport

Factor of >1000x speed-up enables scaling to
large feature sets, providing new utility

Disease progression models infer group-level temporal trajectories of
change in patients’ features, providing unique insight into disease biology
and staging systems. Discrete models consider disease progression as a
latent permutation of events, where each event corresponds to a feature
becoming probabilistically abnormal. However, permutation inference using
traditional maximum likelihood approaches becomes prohibitive due to
combinatoric explosion, severely limiting model dimensionality and utility.

We leverage optimal transport (OT) to derive a new generative model of
disease progression, the variational event-based model (vEBM).

We use synthetic data to demonstrate the vVEBM’s improved speed and
robustness to noise over appropriate baselines (see [1] for details).

We use the vEBM with data from Alzheimer’s disease (AD) and age-
related macular degeneration (AMD), revealing, for the first time, pixel-

level disease progression events in the brain and eye, respectively.

Variational event-based model (vEBM)

Reframing disease progression using optimal transport

We describe disease progression as a latent doubly-stochastic permutation
matrix of events, S, which defines the OT coupling between distributions of
normality and abnormality for each feature (Figure 1). We use entropy-
regularised OT [2] and define a differentiable variational evidence lower
bound (ELBO) using a Gumbel-Sinkhorn prior. Note that the model infers
the sequence from a single set of features per individual (“snapshots”).
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Pixel-level disease events in the brain and eye

First application of vEBM to imaging data in AD and AMD

Figure 2. Pixel-level disease progression sequence in AD obtained by the YEBM. White pixels correspand o events that
have occurred by the corresponding point of the sequence. The figure shows 10 sequence positions at uriform steps of
100 across the total of 1344, with the top left figure corresponding 1o position 50 (the first 50 event d the

bottom right 1o position 950, Images were made from the vEBM output using 3D Sicer (http:

‘We apply the vEBM separately to magnetic resonance imaging (MRI)
tensor-based morphometry data from the Alzheimer’s Disease
Neuroimaging Initiative dataset (Figure 2); and optical coherence
tomography (OCT) data from the Duke University Opthalmology dataset
(Figure 3). The vEBM provides pixel-level visualisation of the order of
pathology appearance and new insights into disease progression.

Figure 3. Pixel-level disease progression sequence in AMD obtained by the vEBIM . White pixels corres pond to events that
have occurred by the corresponding point of the sequence. We have selected 10 sequence positions at urniform steps of
50 across the total of 537 in the full sequence, with the top left figure corresponding to position 80 and the bottom right to

posiion 530. Images were made from the vEBM output using 3D Slicer (https:/fwww.slicer org/).

To evaluate our ADNI pixel-level model with respect to previous analyses
that have used segmented regional brain volumes, we map the vVEBM pixel-
level events post hoc to pixel-level labels obtained from the FreeSurfer
(https://surfer.nmr.mgh.harvard.edu/) segmentation of the reference
template (Figure 4). Our findings are in broad agreement with previous
results, but our model provides more fine-grained insights; we now obtain
continuous trajectories of change, which capture interesting non-linearities
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Figure 4. Trajectories of regional brain volumes in our ADNI cohort, obtained by mapping the vEBM pixel-level everts to
pixeHevel labels obtained from the FresSurfer segmentation of the reference template. The horizontal axis shows the
event number (from 0~ 1344), and the vertical axis shows the fraction of pixel-events that have occurred in each regional
brain volume at the corresponding event number, as defined by the VEBM event sequence.

Broader impact

Low-compute disease progression modelling at scale

The vEBM enables disease progression modelling at scale in multiple areas
of medical imaging, not only the modalities demonstrated here, e
diffusion weighted imaging, microstructure modelling, connectivity; other
imaging modalities, e.g., positron emission tomography, computed
tomography, X-rays, ultrasound; and non-radiological imaging modalities,
e.g., microscopy. Furthermore, the vEBM can run quickly on a relatively
low-spec computer without the need for GPU infrastructure, making it
accessible to research labs — and potentially clinics — that have limited

resources, while further minimising its carbon impact by reducing compute
time.The VEBM code is available here: https://github.com/pawij/vebm
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Unscrambling disease progression at scale:
fast inference of event permutations with

optimal transport

Factor of >1000x speed-up enables scaling to
large feature sets, providing new utility

Disease progression models infer group-level temporal trajectories of
change in patients’ features, providing unique insight into disease biology
and staging systems. Discrete models consider disease progression as a
latent permutation of events, where each event corresponds to a feature
becoming probabilistically abnormal. However, permutation inference using
traditional maximum likelihood approaches becomes prohibitive due to
combinatoric explosion, severely limiting model dimensionality and utility.

* We leverage optimal transport (OT) to derive a new generative model of
disease progression, the variational event-based model (VEBM).

* We use synthetic data to demonstrate the vVEBM'’s improved speed and
robustness to noise over appropriate baselines (see [1] for details).

*  We use the vEBM with data from Alzheimer’s disease (AD) and age-
related macular degeneration (AMD), revealing, for the first time, pixel-
level disease progression events in the brain and eye, respectively.
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Variational event-based model (vVEBM)

Reframing disease progression using optimal transport

We describe disease progression as a latent doubly-stochastic permutation
matrix of events, S, which defines the OT coupling between distributions of
normality and abnormality for each feature (Figure 1). We use entropy-
regularised OT [2] and define a differentiable variational evidence lower
bound (ELBO) using a Gumbel-Sinkhorn prior. Note that the model infers
the sequence from a single set of features per individual (“snapshots”).
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Figure 1. Schematic of the variational event-based model for a toy 4-feature dataset. A. The dataset contains snapshots
from | individuals, with j, k = {1, 2, 3, 4} features and latent events; the features can be of any type and can be incomplete.
B. Before inference, probabilistic models of normality and abnormality are fit to the dataset, giving the likelihood look-up
tables P (Y |8p, ¢ ); these are fixed throughout inference, as denoted by the inner box outside the training loop. To infer the
permutation matrix S, the ELBO is optimised and S is updated each iteration using the Sinkhorn-Knopp algorithm. C. The
resulting hard permutation, s, i.e., the disease event sequence, is obtained from S, using the Hungarian algorithm.



Pixel-level disease events in the brain and eye
First application of vEBM to imaging data in AD and AMD

Figure 2. Pixel-level disease progression sequence in AD obtained by the vEBM. White pixels correspond to events that
have occurred by the corresponding point of the sequence. The figure shows 10 sequence positions at uniform steps of
100 across the total of 1344, with the top left figure corresponding to position 50 (the first 50 events have occurred) and the
bottom right to position 950. Images were made from the VEBM output using 3D Slicer (https://www.slicer.org/).

We apply the vEBM separately to magnetic resonance imaging (MRI)
tensor-based morphometry data from the Alzheimer’s Disease
Neuroimaging Initiative dataset (Figure 2); and optical coherence
tomography (OCT) data from the Duke University Opthalmology dataset
(Figure 3). The vEBM provides pixel-level visualisation of the order of
pathology appearance and new insights into disease progression.
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Figure 4. Trajectories of regional brain volumes in our ADNI cohort, obtained by mapping the vEBM pixel-level events to
pixel-level labels obtained from the FreeSurfer segmentation of the reference template. The horizontal axis shows the
event number (from 0 — 1344), and the vertical axis shows the fraction of pixel-events that have occurred in each regional
brain volume at the corresponding event number, as defined by the vEBM event sequence.



We apply the vEBM separately to magnetic resonance imaging (MRI)
tensor-based morphometry data from the Alzheimer’s Disease
Neuroimaging Initiative dataset (Figure 2); and optical coherence
tomography (OCT) data from the Duke University Opthalmology dataset
(Figure 3). The vEBM provides pixel-level visualisation of the order of
pathology appearance and new insights into disease progression.

Figure 3. Pixel-level disease progression sequence in AMD obtained by the vEBM. White pixels correspond to events that
have occurred by the corresponding point of the sequence. We have selected 10 sequence positions at uniform steps of
50 across the total of 537 in the full sequence, with the top left figure corresponding to position 80 and the bottom right to

position 530. Images were made from the vEBM output using 3D Slicer (https://www.slicer.org/).

To evaluate our ADNI pixel-level model with respect to previous analyses
that have used segmented regional brain volumes, we map the vEBM pixel-
level events post hoc to pixel-level labels obtained from the FreeSurfer
(https://surfer.nmr.mgh.harvard.edu/) segmentation of the reference
template (Figure 4). Our findings are in broad agreement with previous
results, but our model provides more fine-grained insights; we now obtain
continuous trajectories of change, which capture interesting non-linearities



Broader impact

Low-compute disease progression modelling at scale

The vEBM enables disease progression modelling at scale in multiple areas
of medical imaging, not only the modalities demonstrated here, e.g.,
diffusion weighted imaging, microstructure modelling, connectivity; other
imaging modalities, e.g., positron emission tomography, computed
tomography, X-rays, ultrasound; and non-radiological imaging modalities,
e.g., microscopy. Furthermore, the vEBM can run quickly on a relatively
low-spec computer without the need for GPU infrastructure, making it
accessible to research labs — and potentially clinics — that have limited
resources, while further minimising its carbon impact by reducing compute
time.The vEBM code is available here: https://github.com/pawij/vebm

References

[1] Peter A. Wijeratne & Daniel C. Alexander (2024). “Unscrambling disease
progression at scale: fast inference of event permutations with optimal
transport™. In: Advances in Neural Information Processing Systems (NeurlPS)
38. arXiv:2410.14388

[2] Marco Cuturi (2013). “Sinkhorn distances: lightspeed computation of
optimal transport distances”. In: Advances in Neural Information Processing
Systems (NeurlPS) 26. arXiv:1306.0895




	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7

