.o".rgé;&.‘.
}.. NEURAL INFORMATION
.;.i. , PROCESSING SYSTEMS
ole

Prompt Tuning Strikes Back:
Customizing Foundation Models with
Low-Rank Prompt Adaptation

Abhinav Jain, Swarat Chaudhuri, Thomas Reps, Chris Jermaine
NeurIPS 2024

PEFT — A Brief Overview

Objective: Pick and fine-tune a subset of
parameters while being computationally
cheaper than SFT but achieving the same
performance.

Shortcomings of existing methods -

= Maintain multiple adapter-like modules
for each task on the server side

= Select and assemble subset of modules
every time a batch is processed during
inference

Trainable Frozen
- Jser ® ==e Server
O X
Input Quer O —
P y O Task-specific
O | Adapters
O tasky
v
Response
=] -
: ®* v Yes “ No : Foundation
| ® Code Completion | Model

PEFT — A Brief Overview

Prompt-tuning is a promising approach Trainable Frozen
= Prepends a small set of vectors (soft- @ User _E Server
prompt) at the input layer for a task — O X
= No server-side task-specific processing 8 o task,
Input Query — ..
But, it's not as high-performing as other O Task-specific
approaches like LoRA! O ——| Adapters
O tasky
v
Response
T o .
: ®* “ Yes “ No : Foundation
| ® Code Completion | Model

Can we further improve the performance of
prompt-tuning while staying parameter-efficient?

LoPA: Low-rank Prompt Adaptation

() Trainable Frozen

= |nstance-aware prompt tuning-based approach

» Task-specific component, Zs : shares task information across samples

= Non-linear function combines Zs and Z; to get Z

decomposition, Z; = u X v, where u, v are low-rank matrices

i SOftD"OﬁDt | input prompt i_i
soft-prompt,Z = f(x) Vx € D 2 — Ix.
z, | ufH-o
’ [ZSI %@= L Encoder § Lo
} Low-rank U% a> bl O ey
E% |decomposition |- ZA | S
= Constructs soft prompt using User 8, -2~

Low-Rank Prompt Adaptation (LoPA)

= |nstance-specific component, Z; : incorporates information for each instance

= Gating function, g activates task-specific information conditioned on instance-specificity

FM

= For parameter efficiency, it approximates the instance-specific component using low-rank

Experimental Setup

= Six Natural Language Understanding tasks from the GLUE benchmark
= SST-2, MNLI, MRPC, QNLI, QQP and RTE
= Optimise 355M RoBERTa foundation model

» Three Code Understanding tasks
= Code Completion from MBPP

= |nput/Output Unit test prediction from CruxEval
= Optimize 350M CodeGen, 1.3B-7B DeepSeek-Coder, 2.7B Phi-2, 3.8B Phi-3 and 8B Llama3

= Suite of baselines with different customization methods
= FFT
= | oRA
= Standard Prompt Tuning

= S-IDPG, Z = Zs + 7,

Results on Natural L.anguage

Tuning Tunable SST-2 MNLI MRPC QNLI QQP RTE Avg
Parameters (acc) (acc) (acc&Fl1) (acc) (acc & F1) (acc)
FFT 355M 95.99 90.40 90.81 94.60 90.39 85.92 91.35
LoRA 2.36M 96.22 90.30 90.77 94.69 89.91 85.66 91.26
~ None 0 5997 3960 7352 50.16 4234 5343 53.17
PT 102K 8440 5467 7238 5874 4820 53.07
S-IDPG 2.89M 95.30 84.50 78.60 90.48 84.88 7726 85.17
Ours 1.60M 95.99 89.22 91.09 93.74 89.72 83.39

Table 1: Performance on GLUE tasks. We report the average of accuracy and F1 for both MRPC and
QQP. For all the other tasks, we report accuracy. Approaches below the dotted line do not require any
modification to the model on the server side. Bold denotes the best-performing tuning method for the

given model. Underline marks the best result among all prompt tuning methods.

= LoPA outperforms prompt tuning by a significant margin of 28.62 points

Src: https://arxiv.org/abs/2405.15282

Results on Natural L.anguage

Tuning Tunable SST-2 MNLI MRPC QNLI QQP RTE Avg
Paramet\ers (acc) (acc) (acc&Fl1) (acc) (acc & F1) (acc)

FFT 9599 9040 90.81 9460 9039 8592
LoRA 96.22 9030 90.77 94.69 8991 85.66
- Nome 0 5997 3960 7352 50.16 4234 5343 531
PT 102K 8440 5467 7238 5874 4820 53.07 6191

S-IDPG 2.89 9530 8450 7860 9048 84838 7726 85.17
Ours (L.60M) 9599 89.22 9109 9374 8972 83.39

\

Table 1: Performance on GLUE tasks. We report the average of accuracy and F1 for both MRPC and
QQP. For all the other tasks, we report accuracy. Approaches below the dotted line do not require any
modification to the model on the server side. Bold denotes the best-performing tuning method for the
given model. Underline marks the best result among all prompt tuning methods.

= LoPA outperforms prompt tuning by a significant margin of 28.62 points

= |oPA achieves performance close to FFT and LoRA within 1 point while using fewer parameters

Src: https://arxiv.org/abs/2405.15282

Results on Code

= LoPA consistently improves
pass@1 over prompt tuning -
with modest improvements on
smaller FMs to larger
improvements on larger FMs

Src: https://arxiv.org/abs/2405.15282

Model Tuning #Params Code Understanding Code Generation
CruxEval-I CruxEval-O MBPP
FFT 1.3B 45.0 34.8 44.76
LoRA 4. M 35.5 36.0 44.14

None 0 26.8 29.8 34.08
D kCoder-1.3B AN AN
eepseekCoder-1.3 PT 20.5K 412 @
) (S 28.5)

393 440 50.51
D kCoder-7B E >
eepseekCoder PT 410K @ %ﬁ_‘)’
SIDPG 321M 405 < ST 5358
LopA 63sM (500) C4so) (o246)

Table 2: Performance comparison on CruxEval and MBPP tasks. We report average pass@1 scores.
Approaches below the dotted line are prompt-tuning methods, which do not require any modification
to the model on the server side. Bold denotes the best-performing tuning method for the given
model. Underline marks the best result among all prompt-tuning methods. OOM indicates that the
corresponding tuning approach exceeded the available GPU memory and ran out of memory.

Results on Code

= LoPA consistently improves
pass@1 over prompt tuning -
with modest improvements on
smaller FMs to larger
improvements on larger FMs

= |IDPG performs worse than PT in
CruxEval tasks - simply
encoding an instance-specific
prompt does not guarantee
improvements

Src: https://arxiv.org/abs/2405.15282

Model Tuning #Params Code Understanding Code Generation
CruxEval-I CruxEval-O MBPP
FFT 1.3B 45.0 34.8 44.76
(LoRA - 4M 35S 360 adla
None 0 34.08
D kCoder-1.3B
eepseekCoder-1.3 PT 20.5K 34.49
S-IDPG 16.3M 42.50
LoPA 4.2M 44.66
FFT 7B o0oM
(LorA1I8M 475 #8338
None 0 50.51
DeepseekCoder-7B PT 410K 37 47
S-IDPG 32.1M 53.59
LoPA 6.35M 52.46

Table 2: Performance comparison on CruxEval and MBPP tasks. We report average pass@1 scores.
Approaches below the dotted line are prompt-tuning methods, which do not require any modification
to the model on the server side. Bold denotes the best-performing tuning method for the given
model. Underline marks the best result among all prompt-tuning methods. OOM indicates that the
corresponding tuning approach exceeded the available GPU memory and ran out of memory.

10

Results on Code

= LoPA consisten tly im proves Model Tuning #Params Code Understanding Code Generation
. CruxEval-1 CruxEval-O MBPP
pass@1 over prompt tuning -
. . FFT 1.3B 45.0 34.8 44.76
with modest improvements on ToRA 47M 35 5 36.0 1414
§maller FMs to larger DeepseckCoder-13B VO 0 26.8 29.8 34.08
improvements on larger FMs PT 205K 412 31.2 34.49
S-IDPG 16.3M 26.0 28.5 42.50
= IDPG performs worse than PT in LobA 4.2M 430 Ea] 44:60
CruxEval tasks - simply FFT B QOM QOM QoM
. . - LoRA 11.8M 47.5 49.8 53.38
encodmg an lnstance-speCIflc " None 0 393 240 5051
DeepseekCoder-7B ' ' '
prompt does not guarantee PT 41.0K 45.8 44.8 37.47
im provements S-IDPG 32.1M 40.5 41.5 53.59
LoPA 6.35M 50.0 48.0 52.46
= LoPA PerfOl’mS on par with LoRA Table 2: Performance comparison on CruxEval and MBPP tasks. We report average pass@1 scores.
. . G Approaches below the dotted line are prompt-tuning methods, which do not require any modification
while BT fewer trainable to the model on the server side. Bold denotes the best-performing tuning method for the given
params model. Underline marks the best result among all prompt-tuning methods. OOM indicates that the

corresponding tuning approach exceeded the available GPU memory and ran out of memory.

11
Src: https://arxiv.org/abs/2405.15282

Results on Code

Conclusions

= Averaged across all tasks and
models, LoPA showed relative
improvements of 28.52% and
20.16% over PT and IDPG.

= LoPA outperformed LoRA in 11/24
cases while being in the 0.5% range
in remainder of tasks

Src: https://arxiv.org/abs/2405.15282

Tuning Tunable SST-2 MNLI MRPC QNLI QQP RTE Avg
Parameters (acc) (acc) (acc & F1) (acc) (acc &F1) (acc)

FFT 355M 9599 9040 9081 9460 9039 8592 9135
LoRA 236M 9622 9030 9077 94.69 8991 8566 91.26

~ None 0 5997 3960 7352 50.16 4234 5343 53.17
PT 102K 8440 5467 7238 5874 4820 53.07 6191
SIDPG 2.89M 9530 8450 7860 9048 843838 7726 85.17
Ours 1.60M 9599 89.22 91.09 9374 8972 83.39 90.53

Table 1: Performance on GLUE tasks. We report the average of accuracy and F1 for both MRPC and
QQP. For all the other tasks, we report accuracy. Approaches below the dotted line do not require any
modification to the model on the server side. Bold denotes the best-performing tuning method for the
given model. Underline marks the best result among all prompt tuning methods.

. Code Understanding Code Generation
Model T #P:

ode nning arams CruxEval-I CruxEval-O MBPP
FFT 1.3B 45.0 348 44.76

_LoRA 4M 3B 60 414
None 0 26.8 29.8 34.08
DeepseekCoder-13B o 205k 412 312 34.49
S-IDPG 16.3M 26.0 28.5 42.50
LoPA 42M 43.0 34.5 44.66
FFT 7B O0OM O0OM [0]0)

_LoRA __18M 475 __ o8 _____ 3338
None 0 39.3 44.0 50.51
DeepseckCoder-7B o 41.0K 45.8 448 37.47
S-IDPG 32.1M 40.5 41.5 53.59
LoPA 6.35M 50.0 48.0 52.46

Table 2: Performance comparison on CruxEval and MBPP tasks. We report average pass@1 scores.
Approaches below the dotted line are prompt-tuning methods, which do not require any modification
to the model on the server side. Bold denotes the best-performing tuning method for the given
model. Underline marks the best result among all prompt-tuning methods. OOM indicates that the
corresponding tuning approach exceeded the available GPU memory and ran out of memory.

12

Performance as a function of

r80

r60

L40

r20

r80

r60

r40

r20

CruxEval-O
30
—
®251
wn
1]
[+]
(o}
20
151
5 10 25 50 100
Soft Prompt Length (m)
90.0
9 87.5
© 85.0
G
£ 825
2
= 80.0
[«
g 77.5
|
Y 75.0 - %
72.5 -
e i
5 10 25 50 100
Soft Prompt Length (m)
—— S5-IDPG PT —— Ours -

i
(=]
o
)

Relative Number of Parameters (%

i
(=]
o
)

Relative Number of Parameters (%

GLUE Performance (%)

GLUE Performance (%)

96
94
92
90 -
88
86
84
82
| §
80
5 10 25 50 100
Soft Prompt Length (m)
80
70
65
60
A
55
— - —
5 10 25 50 100
Soft Prompt Length (m)
PT Params Qurs Params

soft-prompt length

=
[=]
o

80

60

40

20

Relative Number of Parameters (%)

100

80

60

40

20

Relative Number of Parameters (%)

S-IDPG Params

PT and IDPG see performance
improvements initially but then it
either plateaus or drops.

LoPA does not exhibit performance
fluctuations. Non-linear composition
of Z prevents over-fitting.

LoPA with smaller m outperforms PT
and IDPG with larger m. Dimension of
the offset subspace is much smaller
which LoPA can learn effectively.

Src: https://arxiv.org/abs/2405.15282

13

Performance as a function of function encoding /.

I

7 = SST2 MNLI MRPC QNLI QQP RTE ([Avg)
(acc) (acc) (acc,F1) (acc) (acc,F1) (acc)

concat(Zg, Zy) 94.50 78.45 76.00 91.43 76.11 84.12 | 83.44
max(Zs, Z7) 95.99 89.37 88.62 93.74 78.44 85.92 | 88.68

Zsog(Zy) 95.99 89.22 91.09 93.74 89.72 83.39 \90.53!

Table 3: Performance on GLUE tasks. We report the average of accuracy and F1 for both MRPC and
QQP. For all the other tasks, we report accuracy. Bold denotes the best-performing tuning method for

the given model.

= Simply concatenating Z; and Zg is not sufficient. It can even perform worse than IDPG
which combines them using a linear function.

= Non-linear functions capture complex relationships between Z; and Z¢ and exhibit
better performance overall.

Src: https://arxiv.org/abs/2405.15282

14

Conclusions and Future Work

» Designed LoPA to optimize foundation models which is an instance-specific soft-
prompting PEFT method

= Used a low-rank approximation of instance-specific soft prompt to enable
parameter-efficiency

= Qutperforms existing soft-prompting baselines and performs on par with LoRA and
FFT on many tasks

= Explore LoPA’s effectiveness on real-life obscure tasks where newer attention
patterns must be learned

= Consider LoPA as a Conditional Auto-Encoder compressing knowledge from different
instances and providing it as additional information to the Foundation Model

Src: https://arxiv.org/abs/2405.15282

15

	Slide 1: Prompt Tuning Strikes Back: Customizing Foundation Models with Low-Rank Prompt Adaptation
	Slide 2: PEFT – A Brief Overview
	Slide 3: PEFT – A Brief Overview
	Slide 4: Can we further improve the performance of prompt-tuning while staying parameter-efficient?
	Slide 5: LoPA: Low-rank Prompt Adaptation
	Slide 6: Experimental Setup
	Slide 7: Results on Natural Language
	Slide 8: Results on Natural Language
	Slide 9: Results on Code
	Slide 10: Results on Code
	Slide 11: Results on Code
	Slide 12: Results on Code
	Slide 13: Performance as a function of soft-prompt length
	Slide 14: Performance as a function of function encoding Z
	Slide 15: Conclusions and Future Work

