
Prompt Tuning Strikes Back:
Customizing Foundation Models with

Low-Rank Prompt Adaptation

Abhinav Jain, Swarat Chaudhuri, Thomas Reps, Chris Jermaine

NeurIPS 2024

PEFT – A Brief Overview

2

Task-specific

Adapters

Server

Foundation

Model

Input Query

𝑿

𝒚

Response

Yes No

Code Completion

User

𝑡𝑎𝑠𝑘𝑁

𝑡𝑎𝑠𝑘1

Trainable FrozenObjective: Pick and fine-tune a subset of

parameters while being computationally

cheaper than SFT but achieving the same

performance.

Shortcomings of existing methods -

▪ Maintain multiple adapter-like modules

for each task on the server side

▪ Select and assemble subset of modules

every time a batch is processed during

inference

PEFT – A Brief Overview

3

Task-specific

Adapters

Server

Foundation

Model

Input Query

𝑿

𝒚

Response

Yes No

Code Completion

User

𝑡𝑎𝑠𝑘𝑁

𝑡𝑎𝑠𝑘1

Trainable FrozenPrompt-tuning is a promising approach

▪ Prepends a small set of vectors (soft-

prompt) at the input layer for a task

▪ No server-side task-specific processing

But, it's not as high-performing as other

approaches like LoRA!

Can we further improve the performance of
prompt-tuning while staying parameter-efficient?

4

LoPA: Low-rank Prompt Adaptation

5

▪ Instance-aware prompt tuning-based approach

 soft-prompt, Z = 𝑓 𝑥 ∀𝑥 ∈ 𝐷

▪ Constructs soft prompt using

▪ Task-specific component, 𝑍𝑆 : shares task information across samples

▪ Instance-specific component, 𝑍𝐼 : incorporates information for each instance

▪ Non-linear function combines 𝑍𝑆 and 𝑍𝐼 to get Z

▪ Gating function, 𝑔 activates task-specific information conditioned on instance-specificity

▪ For parameter efficiency, it approximates the instance-specific component using low-rank

decomposition, 𝑍𝐼 = 𝑢 × 𝑣, where 𝑢, 𝑣 are low-rank matrices

Experimental Setup

6

▪ Six Natural Language Understanding tasks from the GLUE benchmark

▪ SST-2, MNLI, MRPC, QNLI, QQP and RTE

▪ Optimise 355M RoBERTa foundation model

▪ Three Code Understanding tasks

▪ Code Completion from MBPP

▪ Input/Output Unit test prediction from CruxEval

▪ Optimize 350M CodeGen, 1.3B-7B DeepSeek-Coder, 2.7B Phi-2, 3.8B Phi-3 and 8B Llama3

▪ Suite of baselines with different customization methods

▪ FFT

▪ LoRA

▪ Standard Prompt Tuning

▪ S-IDPG, 𝑍 = 𝑍𝑆 + 𝑍𝐼

Results on Natural Language

7
Src: https://arxiv.org/abs/2405.15282

▪ LoPA outperforms prompt tuning by a significant margin of 28.62 points

Results on Natural Language

8
Src: https://arxiv.org/abs/2405.15282

▪ LoPA outperforms prompt tuning by a significant margin of 28.62 points

▪ LoPA achieves performance close to FFT and LoRA within 1 point while using fewer parameters

Results on Code

9
Src: https://arxiv.org/abs/2405.15282

▪ LoPA consistently improves

pass@1 over prompt tuning –

with modest improvements on

smaller FMs to larger

improvements on larger FMs

Results on Code

10
Src: https://arxiv.org/abs/2405.15282

▪ LoPA consistently improves

pass@1 over prompt tuning –

with modest improvements on

smaller FMs to larger

improvements on larger FMs

▪ IDPG performs worse than PT in

CruxEval tasks – simply

encoding an instance-specific

prompt does not guarantee

improvements

Results on Code

11
Src: https://arxiv.org/abs/2405.15282

▪ LoPA consistently improves

pass@1 over prompt tuning –

with modest improvements on

smaller FMs to larger

improvements on larger FMs

▪ IDPG performs worse than PT in

CruxEval tasks – simply

encoding an instance-specific

prompt does not guarantee

improvements

▪ LoPA performs on par with LoRA

while using fewer trainable

params

Results on Code

12
Src: https://arxiv.org/abs/2405.15282

Conclusions

▪ Averaged across all tasks and
models, LoPA showed relative
improvements of 28.52% and
20.16% over PT and IDPG.

▪ LoPA outperformed LoRA in 11/24
cases while being in the 0.5% range
in remainder of tasks

Performance as a function of soft-prompt length

13
Src: https://arxiv.org/abs/2405.15282

▪ PT and IDPG see performance

improvements initially but then it

either plateaus or drops.

▪ LoPA does not exhibit performance
fluctuations. Non-linear composition

of 𝑍 prevents over-fitting.

▪ LoPA with smaller 𝑚 outperforms PT

and IDPG with larger 𝑚. Dimension of

the offset subspace is much smaller
which LoPA can learn effectively.

RTEMRPC

SST-2CruxEval-O

Performance as a function of function encoding Z

14
Src: https://arxiv.org/abs/2405.15282

▪ Simply concatenating 𝒁𝑰 and 𝒁𝑺 is not sufficient. It can even perform worse than IDPG

which combines them using a linear function.

▪ Non-linear functions capture complex relationships between 𝒁𝑰 and 𝒁𝑺 and exhibit

better performance overall.

Conclusions and Future Work

15
Src: https://arxiv.org/abs/2405.15282

▪ Designed LoPA to optimize foundation models which is an instance-specific soft-

prompting PEFT method

▪ Used a low-rank approximation of instance-specific soft prompt to enable

parameter-efficiency

▪ Outperforms existing soft-prompting baselines and performs on par with LoRA and

FFT on many tasks

▪ Explore LoPA’s effectiveness on real-life obscure tasks where newer attention

patterns must be learned

▪ Consider LoPA as a Conditional Auto-Encoder compressing knowledge from different

instances and providing it as additional information to the Foundation Model

	Slide 1: Prompt Tuning Strikes Back: Customizing Foundation Models with Low-Rank Prompt Adaptation
	Slide 2: PEFT – A Brief Overview
	Slide 3: PEFT – A Brief Overview
	Slide 4: Can we further improve the performance of prompt-tuning while staying parameter-efficient?
	Slide 5: LoPA: Low-rank Prompt Adaptation
	Slide 6: Experimental Setup
	Slide 7: Results on Natural Language
	Slide 8: Results on Natural Language
	Slide 9: Results on Code
	Slide 10: Results on Code
	Slide 11: Results on Code
	Slide 12: Results on Code
	Slide 13: Performance as a function of soft-prompt length
	Slide 14: Performance as a function of function encoding Z
	Slide 15: Conclusions and Future Work

