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PEFT – A Brief  Overview
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Trainable FrozenObjective: Pick and fine-tune a subset of 

parameters while being computationally 

cheaper than SFT but achieving the same 

performance.

Shortcomings of existing methods -

▪ Maintain multiple adapter-like modules 

for each task on the server side

▪ Select and assemble subset of modules 

every time a batch is processed during 

inference
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Trainable FrozenPrompt-tuning is a promising approach

▪ Prepends a small set of vectors (soft-

prompt) at the input layer for a task

▪ No server-side task-specific processing

But, it's not as high-performing as other 

approaches like LoRA!



Can we further improve the performance of  
prompt-tuning while staying parameter-efficient?
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LoPA: Low-rank Prompt Adaptation
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▪ Instance-aware prompt tuning-based approach

 soft-prompt, Z = 𝑓 𝑥  ∀𝑥 ∈ 𝐷

▪ Constructs soft prompt using

▪ Task-specific component, 𝑍𝑆 : shares task information across samples

▪ Instance-specific component, 𝑍𝐼 : incorporates information for each instance

▪ Non-linear function combines 𝑍𝑆 and 𝑍𝐼 to get Z

▪ Gating function, 𝑔 activates task-specific information conditioned on instance-specificity

▪ For parameter efficiency, it approximates the instance-specific component using low-rank 

decomposition, 𝑍𝐼 = 𝑢 ×  𝑣, where 𝑢, 𝑣 are low-rank matrices 



Experimental Setup
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▪ Six Natural Language Understanding tasks from the GLUE benchmark

▪ SST-2, MNLI, MRPC, QNLI, QQP and RTE

▪ Optimise 355M RoBERTa foundation model

▪ Three Code Understanding tasks

▪ Code Completion from MBPP

▪ Input/Output Unit test prediction from CruxEval

▪ Optimize 350M CodeGen, 1.3B-7B DeepSeek-Coder, 2.7B Phi-2, 3.8B Phi-3 and 8B Llama3

▪ Suite of baselines with different customization methods

▪ FFT

▪ LoRA

▪ Standard Prompt Tuning

▪ S-IDPG, 𝑍 =  𝑍𝑆 + 𝑍𝐼



Results on Natural Language
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Src: https://arxiv.org/abs/2405.15282

▪ LoPA outperforms prompt tuning by a significant margin of 28.62 points



Results on Natural Language
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▪ LoPA outperforms prompt tuning by a significant margin of 28.62 points

▪ LoPA achieves performance close to FFT and LoRA within 1 point while using fewer parameters



Results on Code
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▪ LoPA consistently improves 

pass@1 over prompt tuning – 

with modest improvements on 

smaller FMs to larger 

improvements on larger FMs
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▪ LoPA consistently improves 

pass@1 over prompt tuning – 

with modest improvements on 

smaller FMs to larger 

improvements on larger FMs

▪ IDPG performs worse than PT in 

CruxEval tasks – simply 

encoding an instance-specific 

prompt does not guarantee 

improvements
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▪ LoPA consistently improves 

pass@1 over prompt tuning – 

with modest improvements on 

smaller FMs to larger 

improvements on larger FMs

▪ IDPG performs worse than PT in 

CruxEval tasks – simply 

encoding an instance-specific 

prompt does not guarantee 

improvements

▪ LoPA performs on par with LoRA 

while using fewer trainable 

params



Results on Code
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Conclusions 

▪ Averaged across all tasks and 
models, LoPA showed relative 
improvements of 28.52% and 
20.16% over PT and IDPG. 

▪ LoPA outperformed LoRA in 11/24 
cases while being in the 0.5% range 
in remainder of tasks 



Performance as a function of  soft-prompt length
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▪ PT and IDPG see performance 

improvements initially but then it 

either plateaus or drops.

▪ LoPA does not exhibit performance 
fluctuations. Non-linear composition 

of 𝑍 prevents over-fitting.

▪ LoPA with smaller 𝑚 outperforms PT 

and IDPG with larger 𝑚. Dimension of 

the offset subspace is much smaller 
which LoPA can learn effectively. 

RTEMRPC

SST-2CruxEval-O



Performance as a function of  function encoding Z
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▪ Simply concatenating 𝒁𝑰 and 𝒁𝑺 is not sufficient. It can even perform worse than IDPG 

which combines them using a linear function.

▪ Non-linear functions capture complex relationships between 𝒁𝑰 and 𝒁𝑺 and exhibit 

better performance overall.



Conclusions and Future Work
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▪ Designed LoPA to optimize foundation models which is an instance-specific soft-

prompting PEFT method

▪ Used a low-rank approximation of instance-specific soft prompt to enable    

parameter-efficiency

▪ Outperforms existing soft-prompting baselines and performs on par with LoRA and 

FFT on many tasks

▪ Explore LoPA’s effectiveness on real-life obscure tasks where newer attention 

patterns must be learned

▪ Consider LoPA as a Conditional Auto-Encoder compressing knowledge from different 

instances and providing it as additional information to the Foundation Model
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