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Non-stationary Time Series Forecasting
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Related Work
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[1] Kim, T., Kim, J., Tae, Y., Park, C., Choi, J. H., & Choo, J. (2021, May). Reversible instance normalization for accurate time-series forecasting against distribution shift.
In International Conference on Learning Representations.
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Related Work

(2) Handle the non-stationarity between the input and output
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Figure 2: Overview of Paradigm Dish-TS.

Handle the non-stationarity between input and output series through analysis and prediction

of the internal statistics, which focus on most salient trend, rather than seasonality.

[2] Fan, W., Wang, P., Wang, D., Wang, D., Zhou, Y., & Fu, Y. (2023, June). Dish-ts: a general paradigm for alleviating distribution shift in time series forecasting.
In Proceedings of the AAAI conference on atrtificial intelligence (Vol. 37, No. 6, pp. 7522-7529).

[3] Liu, Z., Cheng, M., Li, Z., Huang, Z., Liu, Q., Xie, Y., & Chen, E. (2024). Adaptive normalization for non-stationary time series forecasting: A temporal slice
perspective. Advances in Neural Information Processing Systems, 36.
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Problem and Motivation
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A frequency-based non-stationarity scenario

Non-stationary Time series Non-stationary
Information

Consistent Mean And Variance

(11 01) =(up 02)=(u3 03)

@ Fourier Spectrum @
1 nconsisten Man Frequency
K 2 f 3

Non-stationarity (fl * fZ * f3)

(1) Previous statistics-based methods failed to distinguish

this type of non-stationarity.

(2) Previous Fourier-based methods select main frequencies

randomly or fixedly.

Contributions

(1) We propose FAN, which adeptly addresses both trend
and seasonal non-stationary patterns within time series
data.

2) We explicitly address pattern evolvement with a simple
MLP that predicts the top K frequency signals of the
horizon series and applies these predictions to reconstruct
the output.

3) We apply FAN to four general backbones for time series
forecasting across eight real-world popular benchmarks.
The results demonstrate that FAN significantly improves
their predictive effectiveness
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Z; =DFT(X;) and K;=TopK(Amp(Z;)) and X" = IDFT(Filter(K;,Z;))

FAN
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Normalization Frequency Residual Learning
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Figure 2: An overview of FAN which consists of normalization, frequency residual learning, denor-

l'ﬂdllZdtl()rl steps, and incorporates a prior loss for non-stationary patterns.
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Experiment

Table 2: Forecasting errors with and without FAN. The bold values indicate the best performance.

Methods
Metrics

DLinecar

MAE

MSE

+FAN

MAE

MSE

FEDformer
MSE | MAE

MAE

+FAN

MSE

Informer

MAE

MSE

+FAN

MAE

MSE

SCINet

MAE

MSE

+FAN

MAE

MSE

96
168
336
720

ETTm?2

0.203
0.220
0.245
0.270

0.080
0.093
0.114
0.142

0.198
0.219
0.241
0.264

0.078
0.093
0.113
0.139

0.208
0.249
0.282
0.308

0.082
0.116
0.143
0.174

0.194
0.220
0.272
0.275

0.074
0.093
0.131
0.145

0.226
0.251
0.283
0.347

0.091
0.112
0.140
0.212

0.198
0.219
0.245
0.287

0.077
0.092
0.114
0.154

0.206
0.226
0.262
0.297

0.079
0.094
0.122
0.153

0.198
0.218
0.241
0.264

0.078
0.093
0.113
0.139

96
168
336
720

J

Electricity

0.277
0.272
0.294
0.333

0.195
0.183
0.197
0.233

0.269
0.268
0.289
0.325

0.184
0.178
0.192
0.227

0.298
0.305
0.312
0.330

0.183
0.191
0.194
0.213

0.243
0.251
0.272
0.300

0.148
0.154
0.167
0.189

0.376
0.371
0.377
0.401

0.277
0.269
0.273
0.311

0.250
0.257
0.273
0.306

0.153
0.156
0.167
0.194

0.296
0.306
0.330
0.352

0.188
0.196
0.214
0.240

0.261
0.258
0.278
0.312

0.168
0.163
0.175
0.204

96
168
336
720

Exchange

0.164
0.219
0.288
0.453

0.052
0.090
0.155

0.352

0.167
0.217
0.297
0.406

0.053
0.088
0.162
0.292

0.260
0.312
0.456
0.669

0.112
0.163
0.338
0.661

0.186
0.222
0.336
0.436

0.062
0.090
0.198
0.329

0.532
0.582
0.721
0.889

0.412
0.491
0.847
1.210

0.189
0.257
0.333
0.513

0.066
0.128
0.191
0.474

0.218
0.266
0.337
0.502

0.085
0.126
0.203
0.430

0.169
0.221
0.303
0.439

0.055
0.093
0.167
0.345

96
168
336
720

Traffic

0.387
0.588
0.380
0.407

0.504
0.804
0.504
0.532

0.334
0.334
0.346
0.372

0.403
0.414
0.437
0.472

0.348
0.366
0.383
0.391

0.383
0.422
0.452
0.465

0.326
0.336
0.348
0.372

0.371
0.391
0.414
0.454

0.350
0.366
0.414
0.656

0.428
0.457
0.555
1.002

0.314
0.324
0.356
0.397

0.364
0.383
0.427
0.482

0.399
0.377
0.384
0.401

0.471
0.443
0.459
0.490

0.344
0.348
0.360
0.377

0.393
0.403
0.426
0.454

96
168
336
720

Weather

0.249
0.284
0.344
0.380

0.180
0.237
0.304
0.358

0.214
0.254
0.298
0.345

0.173
0.210
0.275
0.340

0.368
0.409
0.463
0.495

0.299
0.358
0.459
0.526

0.252
0.304
0.366
0.441

0.187
0.240
0.321
0.432

0.299
0.363
0.439
0.496

0.221
0.320
0.437
0.524

0.221
0.258
0.323
0.368

0.175
0.215
0.297
0.360

0.265
0.305
0.341
0.383

0.199
0.245
0.310
0.371

0.215
0.256
0.304
0.340

0.170
0.208
0.270
0.322

Table 3:

The MSE performance averaged across all steps. Bold values indicate the best performance.

Models
Methods

FAN

DLinecar

SAN

Dish-TS

RevIN

FAN

FEDformer

SAN

Dish-TS

RevIN FAN

Informer

SAN

Dish-TS

RevIN

FAN

SCINet

SAN

Dish-TS

RevIN

ETTh1
ETTh2
ETTml1
ETTm2
Electricity
Exchange
Traffic
Weather

0.441
0.135
0.395
0.105
0.193
0.149
0.432
0.249

0.454
0.134
0.390
0.106
0.200
0.172
0.514
0.250

0.465
0.136
0.405
0.108
0.201
0.265
0.591
0.269

0.477
0.149
0.419
0.113
0.207
0.190
0.652
0.272

0.443
0.149
0.400
0.111
0.164
0.170
0.408
0.295

0.530
0.148
0.416
0.106
0.169
0.192
0.395
0.272

0.565
0.217
0.489
0.125
0.181
0.333
0.433
0.562

0.591
0.183
0.491
0.121
0.180
0.267
0.424
0.280

0.465
0.164
0.397
0.106
0.167
0.168
0.400
0.254

0.624
0.201
0.427
0.114
0.191
0.265
0.515
0.256

0.714
0.259
0.504
0.153
0.219
0.472
0.446
0.322

0.688
0.199
0.485
0.130
0.190
0.238
0.894
0.275

0.442
0.136
0.395
0.105
0.177
0.162
0.419
0.242

0.454
0.139
0.393
0.105
0.175
0.174
0.431
0.242

0.489
0.160
0.424
0.122
0.207
0.281
0.489
0.250

0.472
0.149
0.443
0.112
0.164
0.183
0.442
0.251
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Main Results: our proposed FAN effectively enhances
the performance of backbone models, on the ETTm2,
Electricity, Exchange, Traffic, and Weather datasets, the
average MSE performance improvements are rather
significant: 10.81%, 21.49%, 51.27%, 21.97%, and

21.55\% respectively.

Comparison with other normalization methods: It is
evident that FAN generally outperforms the baseline

models (MSE improvements around 7.76%~37.90%) .
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Experiment-further analysis

ETTh1
Comparison of FAN and SAN
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Figure 4: Comparison with other normalization methods. (a) ADF test after normalization, the
smaller the value, the higher the stationarity. (b) Model efficiency comparison with SAN, including
MSE/MAE, parameters (in millions), and training time per iteration (ms/100). (c) Performance in
MSE vs. input length on the ETTm?2 dataset.

(1) Compared to previous normalization methods, our model achieves greater stationarity across all datasets,
particularly incases with larger seasonal patterns (Traffic, ETThl, ETTm1).

(2) FAN and SAN have similar training iteration times, but FAN has 29.79% less parameters. Moreover, FAN achieves a

15.56% improvement in MSE and a 15.30% improvement in MAE.

(3) compared to other models, as the input length increases, among these normalizations, the enhancement of increases

the most, this demonstrates that the instance-wise DFT is capable of extracting more seasonal patterns from the longer

input windows.
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Instance-wise selection of frequencies

Traffic Electricity Table 5: MSE Performance between
' ' ' ' ' ' ' ' 1 instance-wise (FAN) and global selec-
| tion (Fixed) on SCINet backbone.

Electricity

Top 10 Probability
Top 10 Probability

Steps| 96 168 336 720 |Avg.Imp.
0.162 0.165 0.173 0.194’ 18.50%

FAN

Fixed| 0.176 0.192 0.231 0.265

0 10 20 30 40 oo 10 20 30 40 Traffic

Frequency Frequency

Slcps| 96 168 336 720 |Avg.Imp.
0.393 0.403 0.426 0.454’ 10.29%

Figure 6: Top 10 selection propablity density on Traffic and e

Electricity datasets. Fixed | 0.446 0457 0469 0.496

As shown in Table[5] by selecting instance-wise predominant frequencies, FAN achieves an average
improvement of 18.50% and 10.29% on the Electricity and Traffic datasets respectively. This
highlights instance-wise frequency selection rather than assuming fixed frequency patterns.

As shown in Table 5, by selecting instance-wise predominant frequencies, FAN achieves an
averageimprovement of 18.50% and 10.29% on the Electricity and Traffic datasets respectively.
Thishighlights instance-wise frequency selection rather than assuming fixed frequency patterns.
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Variations

Dataset Analysis
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Theoretical Analysis

€2 Variance Over Spectrum

Along with the time series spectral theory [35]. a time series with smaller variance in the spectrum
is more stationary, in this section, we try to prove the proposed FAN can reduce the variance over
spectrum, thus enhance the smlionm‘ily of the input data. Hence, we prove that, given an univariate
time series real value vector x € RY, after removing main frequency components z[k] € K. the
variance on spectrum can be reduced Var (ar*) < Var (a).

Here, the marginal distribution of the amplitude vector (the spectrum) a is represented as a joint
Rayleigh distribution with different scale parameters:

i@ = [ fapitp

) A
S A P

i=1

(12)

Note that although we assume that the freq; are independent with each other, this
assumption is actually widely used [16] since it is qmle possible that a specific component changes
independently. e.g.. the daily weekly changes while the monthly periodicity stays the same. Following
the principle of addilivily of variance for independent variables [13], the variance of the amplitudc
vector a can be expressed as follows:

(13)
16
after removing frequencies k € K, the joint distribution actually becomes:
Lo a?
s = 1 ?-(txp( p) (14
i=Lighk i

thus, the variance of the whole distribution after removing top K-amplitude signals reduces to a
smaller number, since the independent variance of of each dimension is positive, which is:

L

Var (a"*) = Z

=1,k

7172 < Var(a) (15)

Fourier Spectrum Analysis

C.4 Fourier Spectrum Empirical Analysis

The variance in the Fourier spectrum is an important indicator reflecting stationarity [20]. The closer
the frequency components are to each other, the smaller the variance between the components, thus the
stronger the stationarity [35]. Therefore, we compare the changes in frequency domain components
for different methods and present the results in Fig.[T0] In Fig after FAN’s normalization step,
the distribution exhibits alignment of the input and output, and the range of the distribution mean has
decreased to 8, compared with previous methods which are round 80, 70. 70 respectively for SAN,
Dish-TS and RevIN. However, other methods still show significant differences between the input and
output distributions, with the range of the frequency domain amplitude distribution reaching up to
80, indicating the presence of strong non-stationary signals. This highlights the effectiveness of our
method in handling non-stationarity, especially for seasonal periodic signals, which previous methods
have not successfully considered.

(a) FAN (b) SAN (€) Dish-Ts. (6) ReviN

Figure 10: Fourier spectrum on polar axis of ETTm2 dataset with L = 96 after various normalization
methods. Each point indicates one frequency component averaged across the dataset. The blue dots
indicate the input Fourier components, the orange dots represent the output Fourier components. FAN
remove top 5 Fourier components, and SAN slice in 12.
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Frequency Adaptive Normalization For Non-

Ning Gui

stationary Time Series Forecasting

An example explaining our motivation

This section explain why statistics can not handee frequency-based non-stationarity
and why Fourier solution can outperform.

Non-stationary Time series

[TTVIWAWAY

Non-stationary

The model architecture of proposed FAN
This section illustrates the proposed FAN, and its training process.
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Instance-wise vs global main frequency selection

We give a reason why previous Fourier-based solutions failed to tackle the
non-stationary issue.
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layers. The removes signals via
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Ablation study regarding hyper-parameter selections
and various components
This section presents an ablation study on various components and hyper-

their impact on model performance.
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Comparison with other methods
We compare FAN with other models based on performance, level of stationarity
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From these comparisons, it is evident that FAN achieves the best performance,
the lowest level of stationarity after normalization, and modest model efficiency
compared to SAN. It also shows the best g under varying frequency
conditions. Furthermore, FAN's superior performance across all metrics in all
variants the of its different
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