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Post-hoc Explanations for Understanding Deep Networks
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Post-hoc Attribution
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Can be directly applied to existing models Explanation

® May not be model-faithful

® Often not human interpretable

1Sanity Checks for Saliency Maps [Adebayo et al., NeurlPS 2018]
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B-cos Networks?2: Inherently Interpretable Explanations
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2B-cos Networks [Bohle et al., CVPR 2022]
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B-cos Networks?2: Inherently Interpretable Explanations

------------------------------------------------------------------------------------
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® Human Interpretable
® Model-taithful by design

® Need to train models from scratch to obtain

2B-cos Networks [Bohle et al., CVPR 2022]
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Our work: B-cosification
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Our work: B-cosification

Input

® Requires significantly fewer
training steps than full
retraining

® Maintains accuracy

Transform + Fine-tune [HaE«ek iilez10le18 ® Provides model-taithful,

Input

numan interpretable

explanations

23 ® (Can be used for foundation
_,- models where training from
M scratch is costly
US@ oF
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Similar performance at significantly lower cost

- | DenseNet-121 .

Requires significantly fewer
training steps than full
retraining

70-
601

50- ® Maintains accuracy

® Provides model-taithful,

Accuracy (%)
I

30- 4.7x Speedup numan interpretable
o explanations
0. | —— B-cosified Accuracy ® (Can be used for foundation
— Breos Accuracy models where training from
ST 45 90 scratch is costly
Epoch

DenseNet-121 [Huang et al., CVPR 2017]
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Similar performance at significantly lower cost
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DenseNet-121 [Huang et al., CVPR 2017], ViT [Dosovitskiy et al., ICLR 2021]

45
Epoch

90

Requires significantly fewer
training steps than full
retraining

Maintains accuracy

Provides model-faithful,

numan interpretable
explanations

Can be used for foundation
models where training from

scratch is costly

B-cosification: Transforming Deep Neural Networks to be Inherently Interpretable




Interpretability on par with B-cos

B-cos

Initial

e ® Requires significantly fewer

Goldfinch

training steps than full
retraining

® Maintains accuracy
German
Shepherd : .
epher ® Provides model-faithtful,
human interpretable
explanations
Flagpole

® (Can be used for foundation
models where training from

scratch is costly
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Interpretability on par with B-cos

B-cos B-cosified (Ours)
e_‘llnitia‘l After _'1 Epoch
= . ® Requires significantly fewer
Goldfinch training steps than full
retraining
® Maintains accuracy
German
>hepherc ® Provides model-faithful,
human interpretable
¢ explanations
Flagpole
® (Can be used for foundation
models where training from
| il scratch is costl
Limousine == ﬂi@’m;& N y
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Interpretability on par with B-cos

B-cos B-cosified (Ours)
e_ﬁlnitia‘l After _'1 Epoch Fj%al
e 0 % ® Requires significantly fewer

Goldfinch training steps than full
retraining
® Maintains accuracy
German
>hepherd “ ® Provides model-faithful,
- human interpretable
¢ @ explanations
Flagpole by
® (Can be used for foundation
models where training from
o scratch is costly
Limousine ===
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B-cosification of a foundation model: CLIP3

® Requires significantly fewer

training steps than ful
retraining

® Maintains accuracy

® Provides model-taithful,

numan interpretable
explanations

® Can be used for foundation
models where training
from scratch is costly

3CLIP [Radford et al., ICML 2021]
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B-cosification of a foundation model: CLIP3

Input Image
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® Requires significantly fewer

= v:ﬂ'
S

ey training steps than full
retraining

® Maintains accuracy

® Provides model-taithful,
“Flowers"

numan interpretable

explanations

A - ® Can be used for foundation
F el models where training

3CLIP [Radford et al., ICML 2021]

from scratch is costly

B-cosification: Transforming Deep Neural Networks to be Inherently Interpretable




Bridging the gap between conventional and B-cos models

3-channel Inputs

6-channel Inputs

Normalized Inputs

Unormalized Inputs We perform d StUdy on.

® which modifications

No Unit Normalized
Weights

Unit Normalized Weights are necessary
® how to best apply

Activation function
between layers

No Activation function

the modifications
between layers

B=1 (linear transtforms)

B=2 (non-linear
transforms)

Biases in layers

No biases in layers
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Bridging the gap between conventional and B-cos models

Conventional B-cos B-cosified
3-channel Inputs 6-channel Inputs
Normalized Inputs Unormalized Inputs

Preserves functional

N it N lized equivalence
o Unit Normalize Unit Normalized Weights X

Weights
Activation function No Activation function
between layers between layers

B=2 i
B=1 (linear transtorms) (non-linear
transtorms)

Biases in layers No biases in layers
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Conventional B-cos B-cosified
3-channel Inputs 6-channel Inputs 6-channel Inputs
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Weights
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Bridging the gap between conventional and B-cos models

3-channel Inputs 6-channel Inputs

Unormalized Inputs Normalized Inputs

Preserves functional

. . . equivalence No Unit Normalized
Unit Normalized Weights X .
Weights
No Activation function Activation function
between layers between layers

B=2 (non-linear

B=1 (linear transtforms)

transforms)

Biases in layers No biases in layers
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Bridging the gap between conventional and B-cos models

Conventional B-cos B-cosified

3-channel Inputs 6-channel Inputs 6-channel Inputs

Normalized Inputs Unormalized Inputs Normalized Inputs

Preserves functional

No Unit N lized equivalence No Unit N lized
o Unit Normalize Unit Normalized Weights g o Unit Normalize

Weights Weights
Activation function No Activation function Activation function
between layers between layers between layers

B=2 (non-linear

B=1 (linear transforms) transforms) Loses functional equivalence

= Fine-tune
Biases in layers No biases in layers
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Bridging the gap between conventional and B-cos models

3-channel Inputs 6-channel Inputs 6-channel Inputs

Normalized Inputs Unormalized Inputs Normalized Inputs

Preserves functional

No Unit N lized equivalence No Unit N lized
o Unit Normalize Unit Normalized Weights g o Unit Normalize

Weights Weights
Activation function No Activation function Activation function
between layers between layers between layers
B=1 (linear transforms) | f : : B=2 (non-linear
oses functional equivalence transforms)
= Fine-tune

Biases in layers No biases in layers
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B-cosification generalizes to a variety of architectures and models

Accuracy reached at a much lower training cost

Top-1 Accuracy (%) Efficiency Gains

Model pretrained B-cos [10] B-cosified A | ¢ speedup
ResNet-18 69.8 68.7 71.5 +2.8 | 29 x3.1
ResNet-50-v1 76.1 75.9 76.5 +0.6 | 46 x2.0
ResNet-50-v2 80.9 75.9 77.3 +1.4 | 10 %X 9.0
DenseNet-121 74.4 73.6 76.3 +2.7 | 18 %x5.0
VIiT-Ti 70.3 60.0 69.3 +9.3 | 10 %X 9.0
ViT-S 74.4 69.2 75.2 +6.0 | 10 %X 9.0
ViT-B 75.3 74.4 75.3 +0.9 | 57 x1.6
ViT-L 75.8 75.1 75.5 +0.4 | 66 x1.4
ViT_.-Ti 72.6 67.3 72.3 +5.0 | 10 %X 9.0
ViT,_.-S 75.7 74.5 76.0 +1.5 | 32 x2.8
ViT.-B 76.8 77.1 76.7 -04 - -
ViT.-L 77.9 77.8 77.1 -0.7 . -

ImageNet CNNs and ViTs
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B-cosification generalizes to a variety of architectures and models

Accuracy reached at a much lower training cost

Top-1 Accuracy (%) Efficiency Gains

Model pretrained  B-cos [10]  B-cosified Aacc | ¢ speedup Zero-shot Evaluation Linear Probe Evaluation
ResNet-13 69.8 68.7 71.5 +2.8 29 x3.1 1 Text2Concept 1 B-cosified (IMN) 1 B-cosified (CC3M) [ 1 Standard
ResNet-50-v1 76.1 75.9 76.5 +0.6 | 46 x2.0 100 i,
ResNet-50-v2 80.9 75.9 77.3 +1.4 | 10 %9.0 S 67, 778 9P
DenseNet-121 74.4 73.6 76.3 +2.7 | 18 x5.0 2 68.5 '
ViT-T1 70.3 60.0 69.3 +9.3 | 10 %X 9.0 - 50 s
ViT-S 74 .4 69.2 75.2 +6.0 | 10 X 9.0 § 472 447 45.2 sap -6 188 485
ViT-B 75.3 74.4 753 +0.9 | 57 x1.6 3 40 s 49 343
ViT-L 75.8 75.1 75.5 +0.4 | 66 x1.4 <
ViT,.-T1 72.6 67.3 72.3 +5.0 | 10 %X 9.0 20 9.9 10.8 114 10.3
ViT.-S 75.7 74.5 76.0 +1.5 | 32 X 2.8
ViT.-B 76.8 77.1 76.7 -04 - - 0 Natural Data  Specialized Data Structured Data Natural Data  Specialized Data Structured Data
ViT,.-L 77.9 77.8 77.1 -0.7 - -

ImageNet CNNs and ViTs CLIP
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B-cosification generalizes to a variety of architectures and models

Localization of explanations on par with B-cos, outperforms conventional attribution methods
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Takeaways

® B-cosification provides the interpretability benetits of B-cos models at a much lower cost
® Better to B-cosity existing models instead of training B-cos models from scratch

® Shows promise as a means to obtain inherently interpretable foundation models
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