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LLM Development Pipeline

Preference optimization is a technique that allows us to control the behavior of large-scale
unsupervised language models (LMs) by aligning them with human preferences
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Preference Optimization

- Preference optimization is a technique that allows us to control the
behavior of large-scale unsupervised language models (LMs) by aligning
them with human preferences

- Collecting human feedback is expensive and laborious [1]
- Hundreds to millions of dollars per 100k preference labels
- It becomes even more expensive for specialized domains (e.g.,
medical/sciences domain, potential superhuman Al systems)
- Feedback generation takes months at large scale!

- Potential Solution: (Bayesian) Active Learning

[1] Casper et. al. Open Problems and Fundamental Limitations of Reinforcement Learning from Human Feedback, 2023.




Active Learning for Preference Modeling in LLMs

- Selecting the most informative prompts/responses to gather feedback is
essential to reduce costs and enable better LLMs!
- Bayesian Active Learning provides a principled approach and has
demonstrated remarkable success across different fields [2]

- Leveraging Active Learning (AL) for Preference Modeling in LLMs comprises
three main challenges:
- Prompt-answer pool is arbitrarily large and semantically rich
- Human feedback is inherently noisy [2]
- The intrinsic scale of LLMs requires batch acquisition and prohibits
frequent model updates

[2] Gal et. al. Deep Bayesian Active Learning with Image Data. ICML, 2017.
[3] Stiennon et al. Learning to summarize with human feedback. NeurlPS, 2021
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Bayesian Active Learner for Preference Modeling
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Preference Model Epistemic Uncertainty Estimation

- We design a Bayesian Preference Model whose likelihood follows the
Bradley-Terry assumption [4]
- Posterior predictive distribution:

Py &= Uz | & Y805 Pivain) = / p(y1 > y2 | ,91,Y2,0)p(0 | Dirain)dO

- Posterior Approximation via ensemble of adapters

[4] Bradley & Terry. Rank Analysis Of Incomplete Block Designs: The method of paired comparisons. Biometrika, 1952.




Feature Space Entropy Estimation

- We estimate entropy via the KSG marginal entropy estimator [5]:

~ d
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- Implementation:
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[5] Kraskov et. al. Estimating Mutual Information. Physical Review E, 2004.




Experiments
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Experiments

- How does BAL-PM compare with other stochastic acquisition policies?
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Experiments

- Does BAL-PM encourage diversity and prevent the acquisition of redundant

samples?
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Experiments

- How does BAL-PM scale to larger LLMs?
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Closing Remarks

- BAL-PM is a stochastic policy for active batch acquisition in Preference
Modeling for LLMs
- Prevent the acquisition of redundant samples, a pathology of
single-point acquisition schemes

- Impact: An economy of hundreds of thousands of dollars and months of
labeling work in the current scale of LLMs.

- Limitations
- Strong reliance on the quality of the LLM feature space
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