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Problem setup

e We want to plan from known, factorized dynamics and rewards,
expressed as a factor graph.

e Rewards are hard to reach with random shooting.
e Demonstrations are not available.

e Dynamics are stochastic.



Planning problem with one reward as a factor graph
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T
X,a

Standard RL, can be solved exactly using T steps of value iteration.



Introducing multiple rewards and the A trick
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When A—0, we get additive rewards lim F) = max Er [; R(xt)]



Planning: just approx. inference in a factor graph!

e Leverage research on approximate inference in factor graphs.
e Which type of inference, though? Marginal? MAP? Marginal MAP?



Planning as inference in the literature (roughly)

Learning (planning as maximum likelihood)
e Probabilistic inference for solving discrete and continuous state Markov Decision Processes (2006)

MAP inference
e Planning by probabilistic inference (2003)
e Reinforcement learning and control as probabilistic inference: Tutorial and review (2018)

Marginal inference

e Factored MCTS for large scale stochastic planning (2015)

e Unigueness and Complexity of Inverse MDP_Models (2023)

e Reinforcement learning and control as probabilistic inference: Tutorial and review (2018)

Marginal MAP inference

e Online Symbolic Gradient-Based Optimization for Factored Action MDPs (2016)

e Stochastic planning with lifted symbolic trajectory optimization (2019)

e Approximate Inference for Stochastic Planning in Factored Spaces (2022) (and long etc)



https://homepages.inf.ed.ac.uk/amos/publications/ToussaintStorkey2006ProbabilisticInferenceSolvingMDPs.pdf
https://proceedings.mlr.press/r4/attias03a.html
https://arxiv.org/abs/1805.00909
https://cdn.aaai.org/ojs/9661/9661-13-13189-1-2-20201228.pdf
https://arxiv.org/abs/2206.01192
https://arxiv.org/abs/1805.00909
https://cgi.luddy.indiana.edu/~rkhardon/PUB/ijcai16-sogbofa.pdf
https://ojs.aaai.org/index.php/ICAPS/article/download/3467/3335/
https://arxiv.org/abs/2203.12139

Which type of inference is adequate for planning?

Should maximize expected reward, max Z f(x,a)m(alx)
but standard inference finds...
...the partition function (marginal), E f X, a
...the maximum (MAP), max f(x, a)

X,a
...the maximum partition function action max E f(X, a)
sequence (marginal MAP). a

Only first is exact in the stochastic case. But it isn’'t a standard inference type.



Variational inference
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Claim: All relevant inference types correspond to different weightings of entropy terms.



The different types of inference
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Ranking different types of inference for planning

e For a given posterior, the bounds can be ordered monotonically
MAP
EY(q)
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e ... and also at the maximum
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e Things simplify under deterministic dynamics
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Loopy BP recipe

e Replace the variational distribution with pseudomarginals
(i.e., relax domain from marginal polytope to local polytope).

e Replace exact entropy with Bethe entropy.

o For planning: Replace the planning entropy with the
Bethe version of the planning entropy.

m Non-concave problem — Value BP (loopy BP for planning).
m It has a simple concave approximation.
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The stochasticity of the dynamics is key
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Other inference types lack reactivity in stochastic env.

e Example

Low reward - low reactivity High reward - high reactivity

- >

Agent controlled

e MMAP: Takes actions to move “left” in the above slider.
e VBP: Keeps the environment at the far “right” in the above slider.
o Also, reacts to the environment and achieves maximum reward.



Summary

e All inference types correspond to VI with a modified entropy term.
e Planning is a distinct type of inference.

e This allows to compare the different types of inference for planning.
e LBP can be modified for planning, includes “backward reasoning”.

e Using these ideas, many inference algorithms can be adapted for
planning, and vice versa.



