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Speech-to-Speech Translation (S2ST)

Two stages
- S2UT (speech-to-unit translation): Convert source speech into target speech units
- Unit-Vocoder: Synthesize target speech from target speech units
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Non-autoregressive Speech-to-Speech Translation

S2UT Model
 Transformer/Conformer-based
- Non-autoregressive Transformer (NAT): Masked-Predict

Language Model
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Non-autoregressive Speech-to-Speech Translation

S2UT Backbone: CMLLM [l] Generated Unit ~ Target Unit
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[1] Ghazvininejad et al., (2019). Mask-Predict: Parallel Decoding of Conditional Masked Language Models
[2] Huang et al., (2023). TRANSPEECH: SPEECH-TO-SPEECH TRANSLATION WITH BILATERAL PERTURBATION



Challenge in Non-autoregressive S2ST

Multi-modality Problem

- Acoustic: the same content can sound differently due

to acoustic conditions

- Linguistic: Multiple correct translations exist for the

same source speech

[1] Huang et al., (2023). TRANSPEECH: SPEECH-TO-SPEECH TRANSLATION WITH BILATERAL PERTURBATION
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Strategy: Speech Normalization with Diffusion

DiffNorm: diftusion-based speech normalization
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Strategy: Speech Normalization with Diffusion

Construct Normalized Speech Units:
- Train VAE model on target speech feature
- Train Diffusion Model on VAE latents

« Units Construction:
- Choose a start time T to inject noise into the clean latents (z,-> z;)
- Denoise with pre-trained Diffusion Model and reconstruct feature

- Predict normalized speech units with reconstructed feature
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CMLM with DiffNorm Units

Training with classifier-guidance (adapted from Diffusion to NAT)
- Randomly replace source representation with null representation

- Improve decoder’s iterative decoding quality, especially for long-sequences
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Selected Experiment Results

D System Quality 1 Inference Speed t
En-Es En-Fr Speed Speedup

Autoregressive

1 Transformer' [30] 10.07 15.28 870 1.00x
2 Norm Transformer' [31] 12.98 15.93 870  1.00x
3 Conformer! 13.75 17.07 895  1.02x
Non-autoregressive Model

4 CMLM 12.58 15.62

5  CMLM + BiP{[20] 12.62 1697 4031 3:34x
Our Improved Non-autoregressive Model

6 CMLM + DIFFNORM 18.96 17.27

7 CMLM + CG? 17.06 16.89 4651  5.34x
8 CMLM + DIFFNORM + CG# 19.49 17.54

Table 2: Comparison of speech-to-speech models evaluated by quality (ASR-BLEU) and speed
(units/seconds). Results with T are taken from the prior work [20]. ¥ We use w = 0.5 for CG. Our
NAT models achieve superior translation quality while maintaining their fast inference speed.



Selected Experiment Results
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Figure 4: Trade-off between quality (ASR-BLEU) and latency for varying numbers of decoding
iterations. Five markers correspond to {15, 10, 7, 5, 3} decoding iterations. Decreasing the number of
iterations results in a decline in model performance, traded off for faster speedup. With DIFFNORM
and CG, our S2UT model achieves a better quality-latency trade-off than CMLM and outperforms
a strong autoregressive baseline with large speedups.
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