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Environment: MDP

Finite-Horizon Markov Decision Process (MDP): (&', </, P, £, H, s,)

S = U &', (State space): where &', is the set of states at stage &
he[H]

2/ (Action space): A finite set of actions

P:&8, X — M(S,,,) (Transition function)

r: & X — [0,1] (Reward function) [Deterministic for convenience]
H > 1 (Horizon)

s; € &' (Start state) Hl= (1. H)
12 A (X) = Set of probability distributions over the set X



Example: MDP

/ . ay, dy
05 >r=0
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Agent’s Behaviour: Policy

w:& = M,(A) (Policy): A map from states to distributions over actions

14 A (X) = Set of probability distributions over the set X
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Example: Offline Data
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Example: Offline Data
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The State Space is Very Very Large!

The number of states | &' | can be very large!

Examples: Chess, Robotics, Go, Self-driving, etc.
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The Problem
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The Problem

Problem: For any € > 0, with access to offline data of size
n =poly(l/e,H,d,| </ |), ind a policy z such that:

v”*(sl) —Vv*(s) L€

(i.e. Find a good policy with a small amount of offline data)
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action spaces
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Example: Offline Data
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Example: Offline Trajectory Data

> ~ S
/////////' \\\\\\\\\* a, d,
& S8

Q.
r o~ =
N‘ , (Mv
Notice

i.e. trajectory data a ~ 7()) a) ~ 7,(5y) @y ~ T,(53)

Offline data (n = 1): ((Sl, 611,(), ar,1,s3), (s3, a2,0,53))
h=1 h=72 h =3
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(Our result) What we know now!

Theorem

Theorem [This work]: For any € > 0, with linear g”-realizability and
access to offline trajectory data (satisfying concentrability) of size

n = poly(l/e, H, d, C), our algorithm outputs a policy 7 such that:

V7 (s1) — V() < €
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(Our method) How we know it...

Our Algorithm (roughly):
Modity the linearly g”-realizable MDP to be a linear MDP

Run an algorithm that works in linear MDPs
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(Future work) What’s next?

Our algorithm isn’t computationally efficient (not poly(1/¢e, H, d, C))

Open problem: Can the problem be solved computationally efficiently?

We require n = €2 (C4H7d4/€2)

Open problem: What is the best possible n?
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