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LeCun’s AGI System

e Perception
o Observe and estimate the world state

e Actor
o Propose actions

e World model (core)
o Predict plausible future state

e (Cost
o Evaluate the state

LeCun, Yann. "A Path Towards Autonomous Machine Intelligence version 0.9. 2, 2022-06-27." Open Review 62.1 (2022): 1-62.



Whatis “World Model”

e A substitute that simulates the real world
e Given previous states and actions, predict the future
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Introducing World Models to Autonomous Driving
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e Expectation
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Limitations of Existing Driving World Models

Generalization

e Limited datascale and °
geographic coverage °
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Representation Capacity
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e Notapplicable for diverse real-world scenarios
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Our Goal

Generalization Representation Capacity Action Control Application
e Limited data scale and e Inferior fidelity e Single action modality e Underexplored
geographic coverage e Lowresolution and e No zero-shot action
T r— frame rate controllability
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e How to build such a driving world model?






Largest Public Driving Video Dataset

Sourced from YouTube 23 https://github.com/OpenDriveLab/DriveAGI
370x larger than nuScenes 7
2059 hours, 40+ nations, 244+ cities, 65M+ frames

Hours-long video samples
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Yang, Jiazhi, et al. "Generalized Predictive Model for Autonomous Driving." Proceedings of the IEEE/CVF Conference on Computer Vision and 3
Pattern Recognition. 2024.


https://github.com/OpenDriveLab/DriveAGI

From Generation Model to Prediction Model

e Base model: SVD (image2video
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Coherent Long-Horizon Rollout

Blattmann, Andreas, et al. "Stable Video Diffusion: Scaling Latent Video Diffusion Models to Large Datasets." arXiv preprint
arXiv:2311.15127 (2023).

Gao, Shenyuan, et al. "Vista: A Generalizable Driving World Model with High Fidelity and Versatile Controllability." Advances in Neural 9
Information Processing Systems 38 (2024).



[
From Generation Model to Prediction Model

Stable Video

Diffusion Non-predictive

How?
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Blattmann, Andreas, et al. "Stable Video Diffusion: Scaling Latent Video Diffusion Models to Large Datasets." arXiv preprint
arXiv:2311.15127 (2023).

Gao, Shenyuan, et al. "Vista: A Generalizable Driving World Model with High Fidelity and Versatile Controllability." Advances in Neural 10
Information Processing Systems 38 (2024).



From Generation Model to Prediction Model

e Impose the first frame as the condition image
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Gao, Shenyuan, et al. "Vista: A Generalizable Driving World Model with High Fidelity and Versatile Controllability." Advances in Neural 11
Information Processing Systems 38 (2024).



From Generation Model to Prediction Model

e Inject previous frames as dynamic priors to enable coherent rollout
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Gao, Shenyuan, et al. "Vista: A Generalizable Driving World Model with High Fidelity and Versatile Controllability." Advances in Neural
Information Processing Systems 38 (2024).
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Improving Fidelity (for Driving Scenarios)

e Dynamics-critical regions only occupy a rather small area

e How to emphasize?
o Highlight motion disparities between prediction and ground truth
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Gao, Shenyuan, et al. "Vista: A Generalizable Driving World Model with High Fidelity and Versatile Controllability." Advances in Neural 13
Information Processing Systems 38 (2024).



Improving Fidelity (for Driving Scenarios)

e Generating fast-moving objects tend to result in corruptions
e How to alleviate?
o Enhance high-frequency structural information (e.g., edges and lanes)
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Gao, Shenyuan, et al. "Vista: A Generalizable Driving World Model with High Fidelity and Versatile Controllability." Advances in Neural 14
Information Processing Systems 38 (2024).




Multi-Modal Action Controllability

e Unified control interface for a versatile action suit
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Gao, Shenyuan, et al. "Vista: A Generalizable Driving World Model with High Fidelity and Versatile Controllability." Advances in Neural 15
Information Processing Systems 38 (2024).



Multi-Modal Action Controllability

e Two training phases

Scarce

phasel: + generalization phase2: + controllability Labeled Data
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e Effective learning strategies
o Multi-stage (low-res = high-res)
o Parameter-efficient LoRA
o Action independence constraint

Gao, Shenyuan, et al. "Vista: A Generalizable Driving World Model with High Fidelity and Versatile Controllability." Advances in Neural 16
Information Processing Systems 38 (2024).



World Model as A Reward Function

e Ourinsights
o 0OD action condition will increase prediction uncertainty
e Generalizable reward estimation

o Conditional variance as a source of reward
m Without referring to ground truth trajectories
m Inherit the strong generalization ability of Vista
m Could be used to evaluate actions in the wild

Reward: 0. 872 0.815 Reward: 0.870 0.849

Actionl L2 Error: 0.94 Reward: 0.88
ot o Action? L2 Error: 1.36 Reward: 0.90

Reward. O 872 0. 832 Reward O 888 0. 860

Gao, Shenyuan, et al. "Vista: A Generalizable Driving World Model with High Fidelity and Versatile Controllability." Advances in Neural
Information Processing Systems 38 (2024).
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Quantitative Results

ours

e Compared to existing driving world models

Metric DriveGAN DriveDreamer WoVoGen Drive-WM GenAD Vista
[100] [123] [88] [125] [134] (Ours)

FID | 73.4 52.6 27.6 15.8 154 6.9

FVD | 502.3 452.0 417.7 122.7 184.0 89.4

e Compared to prominent video generators

Visual Quality Motion Rationality
96.67
93.33 - 93.33 84.85
' 72.73
27.27
21.82 15.15
3.33 6.67 6.67
12VGen-XL DynamiCrafter SvD 12VGen-XL DynamiCrafter SvD
mQurs mBaselines

Yang, Jiazhi, et al. "Generalized Predictive Model for Autonomous Driving." Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. 2024.

Gao, Shenyuan, et al. "Vista: A Generalizable Driving World Model with High Fidelity and Versatile Controllability." Advances in Neural
Information Processing Systems 38 (2024).
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Visualization: Open-World Generalization

e Generalization to novel scenarios

Gao, Shenyuan, et al. "Vista: A Generalizable Driving World Model with High Fidelity and Versatile Controllability." Advances in Neural 19
Information Processing Systems 38 (2024).



Visualization: Action Controllability
turn left go straight turn right
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Gao, Shenyuan, et al. "Vista: A Generalizable Driving World Model with High Fidelity and Versatile Controllability." Advances in Neural
Information Processing Systems 38 (2024).




Visualization: Counterfactual Reasoning Ability

ground
truth
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e Could be used for close-loop simulation

Gao, Shenyuan, et al. "Vista: A Generalizable Driving World Model with High Fidelity and Versatile Controllability." Advances in Neural
Information Processing Systems 38 (2024).
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Our Code and Model are Open-Sourced!

e OpenDV Dataset
https://github.com/OpenDrivelLab/DriveAGI

e Vista Code & Model
https://github.com/OpenDrivelLab/Vista

e Video Demo
https://opendrivelab.com/Vista

Yang, Jiazhi, et al. "Generalized Predictive Model for Autonomous Driving." Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. 2024.

Gao, Shenyuan, et al. "Vista: A Generalizable Driving World Model with High Fidelity and Versatile Controllability." Advances in Neural 22
Information Processing Systems 38 (2024).


https://github.com/OpenDriveLab/DriveAGI
https://github.com/OpenDriveLab/Vista
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