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Graph Hierarchies
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e Given an input graph G, a graph
hierarchy of G consists of a
sequence of graphs (G, ®x) k=01,
where:

e (G, denotes 6.

o ¢ Vi — Viiq are surjective
node mapping functions.

e Each node vy, ; € Vjyq
represents a cluster of a subset

~_ of nodes {v; ;} € V.




Graph Hierarchies

e Graph hierarchies can be

Gy ={Vo, Eo}
Vo, constructed by repeatedly
oS applying graph coarsening
e algorithms:

e METIS, Spectral clustering,
Loukas methods, Newman
methods, Louvain methods

e These algorithms take a graph,
G, and generate a mapping
_ function ¢y: Vi, = Viyq1, which
“._maps the nodes in G, to the
" nodes in the coarser graph Gy, ;.
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Transformers on Graphs

|

e Transformers have | MatMul
revolutionized deep learning, in ( Softf\,,ax]
particular sequence learning, and

yield promising performance over $

graphs. =TS

e Graph Transformers usually [ MatMul |
apply the regular attention f i

quadratic attention across all : : :
Linear Linear Linear

graph nodes and encode the 0 % v
graph connectivity using specific
positional encodings (PEs).
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Transformers on Graphs

|

[ MatMul
1 A
| SoftMax |
However, Graph Transformers $
struggle with learning scale )
hierarchical structures, limiting f
their performance, for example, [‘_ i ‘_]
on complex molecular graphs like
polymers and proteins. ILineargJ ILineargJ |LineargJ
Q | K |V
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Graph Hierarchy Distance

e We introduce a novel distance called graph hierarchy
distance (GHD):

GHD" (u,v) = SPD (u,v),
GHD" (u,v) = SPD (¢g—1...¢0 (1), Pr—1...00(v))

e It can be observed that
GHD "0 (v1, v11) = 7, whereas
GHD"1 (v1,vll) =2




Graph Hierarchy Distance

e GHD can capture chemical motifs such as CF3 and aromatic
rings on molecule graphs.

e GHD can distinguish the Dodecahedron and Desargues
graphs. The Dodecahedral graph has GHD"1 of length 2
(indicated by the dark color), while the Desargues graph
doesn't.




Hierarchical Distance Structural Encoding

e Based on GHD, we propose hierarchical distance structural
encoding (HDSE):

D, ; = [GHD’, GHD', ..., GHD*]. . € R¥*!

1,7

where K controls the maximum level of hierarchy.

o [Expressiveness of HDSE]:

GD-WL with HDSE is strictly more expressive than GD-WL
with the shortest path distance SPD.



Integrating HDSE in Graph Transformers

e We integrate HDSE into the attention mechanism of each
graph transformer layer to bias each node update:

Hi;j — MLP ([eglipg,j y T ,egfipfj]) E R)
clipf; = min (L, GHDY, ) ,0 < k < K,
QK'
Attention (X) = softmax (A + H) V, A =
Vi

This module is backbone-agnostic and can be seamlessly
integrated into the self-attention mechanism of
existing graph transformer architectures.




Integrating HDSE in Graph Transformers

o [Expressiveness of Graph Transformers with HDSE]:

There exists a graph transformer using HDSE (with fixed
parameters), denoted as M, such that M is more expressive
than graph transformers with the same architecture using
SPD or using no relative positional encoding, regardless of
their parameters.

It demonstrate the superior expressiveness
of HDSE over SPD or no RPE in graph
transformers.




Integrating HDSE in Graph Transformers

e [Generalization of Graph Transformers with HDSE]:

For a semi-supervised binary node classification problem,
suppose the label of each node i € V is determined by node
features in the “hierarchical core neighborhood” S_i={j: D =
D*} for a certain D*, where D is HDSE. Then, a properly
initialized one-layer graph transformer equipped with HDSE
can learn such graphs with a desired generalization error,
while using SPD or using no relative positional encoding cannot
guarantee satisfactory generalization.

It indicates that learning with HDSE can capture the
labeling function characterized by the hierarchical core
neighborhood, which is more general and comprehensive
than the core neighborhood for SPD or no RPE.




Evaluation

Table 2: Test performance in five benchmarks from [2(]. The results are presented as the mean + standard
deviation from 5 runs using different random seeds. Baseline results were obtained from their respective original
papers. * indicates a statistically significant difference against the baseline w/o HDSE from the one-tailed t-test.

Highlighted are the top first,

and third results.

Model ZINC MNIST CIFAR10 PATTERN CLUSTER
MAE | Accuracy T Accuracy 1 Accuracy T Accuracy T
GCN 0.367 +£0.011 90.705 £ 0.218 55.710 £ 0.381 71.892 £0.334 68.498 £ 0.976
GIN 0.526 £ 0.051 96.485 £ 0.252 55.255 +1.527 85.387 £0.136 64.716 £ 1.553
GatedGCN 0.282 +0.015 97.340 £ 0.143 67.312 +0.311 85.568 + 0.088 73.840 £ 0.326
PNA 0.188 + 0.004 97.940 £ 0.120 70.350 £ 0.630 - -
CIN 0.079 + 0.006 - - - -
GIN-AK+ 0.080 + 0.001 - 72.190 £ 0.130 86.850 £ 0.057 -
SGFormer 0.306 + 0.023 - - 85.287 £ 0.097 69.972 £ 0.634
SAN 0.139 + 0.006 - - 86.581 £ 0.037 76.691 £ 0.650
Graphormer-GD 0.081 + 0.009 - - - -
Specformer 0.066 = 0.003 - - - -
EGT 0.108 + 0.009 98.173 + 0.087 68.702 + 0.409 86.821 + 0.020 79.232 + (0.348
Graph ViT/MLP-Mixer 0.073 £ 0.001 97.422 £ 0.110 73.961 +0.330

Exphormer

98.550 + 0.039

74.696 £ 0.125

86.742 £ 0.015

78.071 £0.037

GT

GT + HDSE

SAT
SAT + HDSE

0.094 £ 0.008

0.084 +0.003*

94.394 + 0.177*

64.651 +£0.591*

86.848 £ 0.037

86.933 + 0.039*

86.713 + 0.049*

74.223 £ 0.573"

77.856 £0.104
78.513 £ 0.097*

dDI]
GraphGPS + HDSE

GRIT
GRIT + HDSE

0.059 + 0.002
0.059 + 0.004

98.108 £ 0.111

76.180 + 0.277"

76.473 + 0.429

86.737 + 0.055

87.281 + 0.064

78.498 +0.121™
80.026 + 0.277




Evaluation

Table 3: Test performance on two peptide datasets from  Table 4: Ablation experiments of coarsening algo-

Long-Range Graph Benchmarks (LRGB) [27]. rithms on ZINC.
Model Peptides-func Peptides-struct Model Coarsening algorithm ZINC
AP 1 MAE | MAE |
GCN 0.5930 £0.0023  0.3496 + 0.0013 wlo 0.094 +0.008
GINE 0.5498 +0.0079  0.3547 +0.0045
GatedGCN 0.5864 + 0.0035  0.3420 +0.0013 METIS 0.089 £ 0.005
GatedGCN+RWSE 0.6069 +0.0035  0.3357 + 0.0006 SAT Spectral 0.083 +0.004
Loukas 0.084 + 0.003
GT 0.6326 +0.0126  0.2529 + 0.0016 Newman
SAN+RWSE 0.6439 £0.0075  0.2545 +0.0012 Louvain 0.088 +0.003
MGT+WavePE 0.6817 +£0.0064  0.2453 + 0.0025
GRIT 0.6988 + 0.0082  0.2460 + 0.0012 wlo 0.070 +0.004
Exphormer 0.6527 + 0.0043 0.2481 + 0.0007 METIS 0.069 = 0.002
Graph VIT/MLP-Mixer  0.6970 £ 0.0080  0.2475 + 0.0015 GraphGPS Spectral
DRew 0.2536 + 0.0015 Loukas 0.067 +0.002
GraphGPS 0.6535 £ 0.0041 ___0.2500  0.0012 Newman 0.062 + 0.003
~ouvain 0.064 =0.002

e Over all datasets, our HDSE makes the transformers
outperform the original transformers.

e Different graph coarsening algorithms result in distinct
multi-level graph structures. The Newman algorithm
exhibits optimal performance on small molecular graphs.



Evaluation
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Figure 3: Visualization of attention weights for the transformer attention and HDSE attention. The left side
illustrates the graph coarsening result. The center column displays the attention weights of a sample node learned
by the classic GT [!9], while the right column showcases the attention weights learned by the HDSE attention.

e HDSE successfully leverages hierarchical structure.



Conclusions

e Our HDSE improves SOTA graph transformer

performance on graphs which exhibit community
structures.

e We theoretically prove the superiority of HDSE
in terms of expressivity and generalization

https://github.com/LUOyk1999/HDSE



Conclusions

e Our HDSE improves SOTA graph transformer

performance on graphs which exhibit community
structures.

e We theoretically prove the superiority of HDSE
in terms of expressivity and generalization

Thanks for listening! o

https://github.com/LUOyk1999/HDSE
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