
QT-ViT: Improving Linear Attention in ViT with Quadratic Taylor Expansion

Yixing Xu, Chao Li, Dong Li, Xiao Sheng, Fan Jiang, Lu Tian, Emad Barsoum
Advanced Micro Devices, Inc.

Abstract

• The time complexity and memory consumption of Vision Transformers increase

quadratically with the number of input patches.

• Linear attention is a way to mitigate the complexity of the original self-attention

mechanism at the expense of effectiveness.

• To make up for the performance gap, previous methods necessitate knowledge

distillation or high-order attention residuals that severely increase GPU memory

consumption during training, making them unsuitable to train large models.

• We propose QT-ViT models that improve the previous linear self-attention using

Quadratic Taylor expansion.

• We substitute the softmax-based attention with second-order Taylor expansion,

and then accelerate the quadratic expansion by reducing the time complexity with a

fast approximation algorithm.

• Extensive experiments demonstrate the efficiency and effectiveness of the

proposed QT-ViTs, showcasing the state-of-the-art results. Particularly, the

proposed QT-ViTs consistently surpass the previous SOTA EfficientViTs under

different model sizes and achieve a new Pareto-front in terms of accuracy and

speed.

QT-ViT

Decompose Quadratic Taylor Expansion

• The quadratic Taylor expansion of the similarity function is:

Sim 𝒒, 𝒌 = exp
<𝒒,𝒌>

𝑑
≈ 1 +

<𝒒,𝒌>

𝑑
+

<𝒒,𝒌>2

𝑑
=

<𝒒,𝒌>

𝑑
+1

2
+1

2
=

<𝜙 𝑞 ,𝜙 𝑘 >2+1

2
,

where <⋅,⋅> is the dot product and 𝜙 𝑥 =
𝑥

4
𝑑

, 1 is used for vectors 𝒒 and 𝒌.

• It is non-trivial to decompose the above equation into two separate kernel embeddings because of the

quadratic term. In the following, we solve this problem by using the Kronecker product.

• Given two vectors 𝐚 = 𝑎𝑖 𝑖=1
𝑑 and 𝐛 = 𝑏𝑖 𝑖=1

𝑑 , we have:

< 𝐚, 𝐛 >2= σ𝑖=1
𝑑 𝑎𝑖𝑏𝑖

2
.

• This is equal to first compute the Kronecker product of each vector and then applying dot product. Given

𝐾𝑟 𝒙 = vec(𝒙 ⊗ 𝒙) where ⊗ is the Kronecker product and vec ⋅ is the vectorized output, we have:

=< 𝐾𝑟 𝐚 , 𝐾𝑟 𝐛 >= 𝑎1𝐚,⋅⋅⋅, 𝑎𝑑𝐚 ⋅ 𝑏1𝐛,⋅⋅⋅, 𝑏𝑑𝐛 = σ𝑖=1
𝑑 𝑎𝑖𝑏𝑖

2
=< 𝐚, 𝐛 >2

• Thus, we have Sim 𝒒, 𝒌 ≈
<𝜙 𝑞 ,𝜙 𝑘 >2+1

2
=

<𝐾𝑟 𝜙 𝒒 ,𝐾𝑟 𝜙 𝒌 >+1

2
=< 𝜑 𝒒 , 𝜑 𝒌 >, where

=𝜑 𝒙 =
1

2
𝐾𝑟 𝜙 𝒙 ,

1

2
=

1

2
vec(𝜙(𝒙) ⊗ 𝜙(𝒙)),

1

2

is the kernel function applied to the query and key vectors.

• Given 𝒙 ∈ ℝ𝑑, we have 𝐾𝑟 𝒙 ∈ ℝ𝑑2
. Thus, the time complexity of this method is 𝒪 𝑁𝑑3 , which is bad.

Preliminaries
Softmax Self-Attention

• Given an input matrix 𝑿 ∈ ℝ𝑁×𝑑 where 𝑁 is the number of patches and 𝑑 is the dimension of each patch, the query, key and

value matrices are:

𝑸 = 𝑿𝑾𝑄, 𝑲 = 𝑿𝑾𝐾 , 𝑽 = 𝑿𝑾𝑉 .

• Then, the attention score is computed on each pair of patches:

• The time complexity of softmax attention is 𝒪 𝑁2𝑑 .
Linear Self-Attention

where the time complexity is changed from𝒪 𝑁2𝑑 to 𝒪 𝑁𝑑2 .
• In order to losslessly decompose similarity function Sim(𝑸𝑘 , 𝑲𝑖), the dimensionality of 𝜙(⋅) need to be infinite.

• A series of instantiations are proposed to compute 𝜙(⋅) efficiently while preserving as much information as possible.

• Such as 𝜙 𝑥 = elu 𝑥 + 1, 𝜙 𝑥 = relu 𝑥 , Sim 𝒒, 𝒌 = 1/2 + 1/𝜋 ⋅ 𝒒𝒌𝑇 + 𝐻𝑟, etc.

• They need KD or the masked output of original softmax attention 𝐻𝑟 to enhance the performance, causing high GPU mem cost.

Reduce the Time Complexity from 𝓞 𝑵𝒅𝟑 to 𝓞 𝑵𝒅𝟐

• By rewriting the definition of 𝐾𝑟 𝜙(𝒙) in its element-wise form, we can get:

=𝐾𝑟 𝜙(𝒙) = 𝐾𝑟
𝒙

4
𝑑

, 1 =
𝑥1
4

𝑑
⋅

𝒙
4

𝑑
, 1 ,⋅⋅⋅,

𝑥𝑑
4

𝑑
⋅

𝒙
4

𝑑
, 1 ,

𝒙
4

𝑑
, 1

 =
𝑥1𝑥1

𝑑
,⋅⋅⋅,

𝑥1𝑥𝑑

𝑑
,

𝑥1
4

𝑑
,⋅⋅⋅,

𝑥d𝑥1

𝑑
,⋅⋅⋅,

𝑥d𝑥𝑑

𝑑
,

𝑥𝑑
4

𝑑
,

𝑥1
4

𝑑
,⋅⋅⋅,

𝑥𝑑
4

𝑑
, 1

• Since the order of the elements in the above equation does not influence the result of the inner product

< 𝐾𝑟 𝜙 𝒒 , 𝐾𝑟 𝜙 𝒌 > as long as they change the order of their elements in the same manner.

• Thus, the above equation can be written as:

෡𝐾𝑟 𝜙(𝒙) = concat(
𝑥𝑖𝑥𝑗 𝑖,𝑗=1

𝑑

𝑑
,

𝑥𝑖 𝑖=1
𝑑

𝑑
,

𝑥𝑖 𝑖=1
𝑑

𝑑
, 1).

• Since the computational load mainly comes from the first quadratic term, we reduce the number of

elements in this term by using the self-multiplication terms 𝑥𝑖
2

𝑖=1

𝑑
 to represent all quadratic terms.

• Therefore, the Kronecker produce can finally be replaced with a compact version:

= ෩𝐾𝑟 𝜙(𝒙) = concat 𝛼 ⋅ 𝑑
𝑥𝑖

2
𝑖=1

𝑑

𝑑
, 𝛽 ⋅ 2

𝑥𝑖 𝑖=1
𝑑

𝑑
, 𝛾

= = concat 𝛼 ⋅ 𝑥𝑖
2

𝑖=1

𝑑
, 𝛽 ⋅

4

𝑑
𝑥𝑖 𝑖=1

𝑑 , 𝛾 (𝛼, 𝛽, 𝛾 are learnable parameters)

Experiments

Table 2: Experimental results on COCO 2017 dataset

using different backbones.

Table 3: Experimental results on COCO 2017

dataset using different backbones.

	Slide 1

