QT-VIiT: Improving Linear Attention in VIiT with Quadratic Taylor Expansion
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where <-,-> is the dot product and ¢p(x) = [

The time complexity and memory consumption of Vision Transformers increase
quadratically with the number of input patches.

Linear attention is a way to mitigate the complexity of the original self-attention
mechanism at the expense of effectiveness.

To make up for the performance gap, previous methods necessitate knowledge
distillation or high-order attention residuals that severely increase GPU memory
consumption during training, making them unsuitable to train large models.

We propose QT-ViT models that improve the previous linear self-attention using
Quadratic Taylor expansion.

We substitute the softmax-based attention with second-order Taylor expansion,
and then accelerate the quadratic expansion by reducing the time complexity with a
fast approximation algorithm.

Extensive experiments demonstrate the efficiency and effectiveness of the
proposed QT-ViTs, showcasing the state-of-the-art results. Particularly, the
proposed QT-ViTs consistently surpass the previous SOTA EfficientViTs under
different model sizes and achieve a new Pareto-front in terms of accuracy and
speed.

QT-ViT

Decompose Quadratic Taylor Expansion

The quadratic Taylor expansion of the similarity function is:
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Sim(q, k) = exp( ) ~ 1+

It is non-trivial to decompose the above equation into two separate kernel embeddings because of the
quadratic term. In the foIIowing we solve this problem by using the Kronecker product.

Given two vectors a = {a;}%-, and b = {b;}% ,, we have:

< a, b >2 (2 aibi)z.
This is equal to first compute the Kronecker product of each vector and then applying dot product. Given
K. (x) = vec(x @ x) where & is the Kronecker product and vec(:) is the vectorized output, we have:

< K,(a), K, (b) >= [aya,",aqa] - [b1b, -, bgb] = (L, a-b-)z =< a,b >?
k) ~ <¢<q>¢<k>>2+1 _ <k(¢@), Kr(¢<k>)>+1 < o(q), (k) >, where

p(x) = | fx(qb(x)), = =| fvec<¢<x>®¢<x>>,f]

Thus, we have Sim(q,

is the kernel function applied to the query and key vectors.

Given x € R4, we have K..(x) € R%”. Thus, the time complexity of this method is @ (N d3), which is bad.

Softmax Self-Attention

Reduce the Time Complexity from O(Nd3) to O(Nd?)
By rewriting the definition of K.(¢(x)) in its element-wise form, we can get:
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Since the order of the elements in the above equation does not influence the result of the inner product

< K. (¢(q)), K (¢(k)) > as long as they change the order of their elements in the same manner.
Thus, the above equation can be written as:
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K.(¢(x)) = concat( \J/_” 1,{x\‘/}_1,{x\‘/}_ ,1).

Since the computational load mainly comes from the first quadratic term, we reduce the number of

elements in this term by using the self-multiplication terms {xiz}il to represent all quadratic terms.
Therefore, the Kronecker produce can finally be replaced with a compact version:

K, (¢(x)) = concat (a : \/E% B ﬁ{xi}fil )
= concat (a : {xiz}li

Figure 2: Attention maps from different linear attention methods

tion and the second-order Taylor expansion (ours).

I {xJ4 v ) (a, B, y are learnable parameters)

including the first-order Taylor expansion, ReLU non-linearity func-
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Table 2: Experimental results on COCO 2017 dataset

» Given an input matrix X € RY*4 where N is the number of patches and d is the dimension of each patch, the query, key and
value matrices are:
 Then, the attention score is computed on each pair of patches: 8
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Figure 1: The accuracy-speed trade-offs of the proposed QT-ViTs and other state-of-the-art trans-
former models on the ImageNet dataset. Latencies are evaluated on the AMD Instinct MI250

using different backbones.

Backbone AP APy AP-; | Params (M)
EfficientViT-B1 | 39.1 58.0 41.8 57.6
QT-ViT-1 39.3 58.2 42.1 57.9
EfficientViT-B2 | 40.8 595 443 68.0
QT-ViT-2 41.1  59.7 447 68.5
EfficientViT-B3 | 42.3 606  45.5 092.1
QT-ViT-3 426 609 459 93.1

Table 3: Experimental results on COCO 2017
dataset using different backbones.

Backbone | AP AP5; APy
QT-ViT-1 w/ APE | 39.3 58.2 42.1
QT-ViT-1 w/o APE | 39.2 58.2 42.0
QT-ViT-2 w/ APE | 41.1 59.7 44,7
QT-ViT-2 w/o APE | 41.0 59.7 44.6
QT-ViT-3w/APE | 426 609 45.9
QT-ViT-3 w/o APE | 42.5 60.8 45.8
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