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Abstract

• The time complexity and memory consumption of Vision Transformers increase 

quadratically with the number of input patches.

• Linear attention is a way to mitigate the complexity of the original self-attention 

mechanism at the expense of effectiveness.

• To make up for the performance gap, previous methods necessitate knowledge 

distillation or high-order attention residuals that severely increase GPU memory 

consumption during training, making them unsuitable to train large models.

• We propose QT-ViT models that improve the previous linear self-attention using 

Quadratic Taylor expansion.

• We substitute the softmax-based attention with second-order Taylor expansion, 

and then accelerate the quadratic expansion by reducing the time complexity with a 

fast approximation algorithm.

• Extensive experiments demonstrate the efficiency and effectiveness of the 

proposed QT-ViTs, showcasing the state-of-the-art results. Particularly, the 

proposed QT-ViTs consistently surpass the previous SOTA EfficientViTs under 

different model sizes and achieve a new Pareto-front in terms of accuracy and 

speed.

QT-ViT

Decompose Quadratic Taylor Expansion

• The quadratic Taylor expansion of the similarity function is:
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• It is non-trivial to decompose the above equation into two separate kernel embeddings because of the 

quadratic term. In the following, we solve this problem by using the Kronecker product.

• Given two vectors 𝐚 = 𝑎𝑖 𝑖=1
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• This is equal to first compute the Kronecker product of each vector and then applying dot product. Given 

𝐾𝑟 𝒙 = vec(𝒙 ⊗ 𝒙) where ⊗ is the Kronecker product and vec ⋅  is the vectorized output, we have:
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is the kernel function applied to the query and key vectors.

• Given 𝒙 ∈ ℝ𝑑, we have 𝐾𝑟 𝒙 ∈ ℝ𝑑2
. Thus, the time complexity of this method is 𝒪 𝑁𝑑3 , which is bad.

Preliminaries
Softmax Self-Attention

• Given an input matrix  𝑿 ∈ ℝ𝑁×𝑑 where 𝑁 is the number of patches and 𝑑 is the dimension of each patch, the query, key and 

value matrices are:

𝑸 = 𝑿𝑾𝑄, 𝑲 = 𝑿𝑾𝐾 ,  𝑽 = 𝑿𝑾𝑉 .

• Then, the attention score is computed on each pair of patches:

• The time complexity of softmax attention is 𝒪 𝑁2𝑑 .
Linear Self-Attention

where the time complexity is changed from𝒪 𝑁2𝑑  to 𝒪 𝑁𝑑2  .
• In order to losslessly decompose similarity function Sim(𝑸𝑘 , 𝑲𝑖), the dimensionality of 𝜙(⋅) need to be infinite.

• A series of instantiations are proposed to compute 𝜙(⋅) efficiently while preserving as much information as possible.

• Such as 𝜙 𝑥 = elu 𝑥 + 1, 𝜙 𝑥 = relu 𝑥 , Sim 𝒒, 𝒌 = 1/2 + 1/𝜋 ⋅ 𝒒𝒌𝑇 + 𝐻𝑟, etc.

• They need KD or the masked output of original softmax attention 𝐻𝑟 to enhance the performance, causing high GPU mem cost.

Reduce the Time Complexity from 𝓞 𝑵𝒅𝟑  to 𝓞 𝑵𝒅𝟐

• By rewriting the definition of 𝐾𝑟 𝜙(𝒙)  in its element-wise form, we can get:
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•  Since the order of the elements in the above equation does not influence the result of the inner product 

< 𝐾𝑟 𝜙 𝒒 , 𝐾𝑟 𝜙 𝒌 > as long as they change the order of their elements in the same manner.

• Thus, the above equation can be written as: 
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• Since the computational load mainly comes from the first quadratic term, we reduce the number of 

elements in this term by using the self-multiplication terms 𝑥𝑖
2
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𝑑
 to represent all quadratic terms.

• Therefore, the Kronecker produce can finally be replaced with a compact version:
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𝑑 , 𝛾   (𝛼, 𝛽, 𝛾 are learnable parameters)

Experiments

Table 2: Experimental results on COCO 2017 dataset 

using different backbones.

Table 3: Experimental results on COCO 2017 

dataset using different backbones.
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