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1. Background & Motivation

Image Database

Descriptor 1 The Visual Foundation Model

OFN ? g, Database (VFM) has significantly
enhanced the performance of
Visual Place Recognition (VPR),
~ avoiding training a model from
______________ Y vEM ® scratf:h on environment-
£ specific data.
N
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2. Solution

Recalibration Centroid-Free Probing (CFP)
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Controlling the (v of task-specific information for each image, the explicit calculation of semantic
enabling more flexible fine-tuning. centroids C for the enhanced generalization.



3. Results

Table 1: Comparison with state-of-the-art methods. * denotes models trained on the GSV-Cities
dataset. Due to the high quality of annotations in GSV-Cities, results from models marked with °
generally outperform those from their corresponding papers. In contrast, results from models without
> are reported in their respective papers.

(a) Comparison with single-stage methods.

Method MSLS Val NordLandx [52] Pitts250k-test SPED
R@1 R@5 R@10|R@1 R@5 R@10|R@1 R@5 R@10|R@1 R@5 R@10
SPE-VLAD’ [54] 782 86.8 88.8 | 255 40.1 461 |89 96.1 973 |731 855 88.7
Gated NetVLAD® [55] | 82.0 889 914 |344 504 577 [89.7 959 97.1 |756 87.1 908
NetVLAD’ [4] 82,6 89.6 92.0 |32.6 47.1 533 |905 962 974 |787 883 914
Conv-AP’ [32] 83.4 90.5 923 |382 548 612 |924 974 984 |80.1 903 93.6
CosPlace’ [17] 83.0 899 918 |344 499 565 |915 969 979 | 753 859 88.6
MixVPR’ [16] 88.0 927 946 | 584 746 80.0 | 946 983 99.0 | 852 921 94.6
EigenPlaces [19] 893 93.7 950 | 544 68.8 741 | 941 980 987 | 699 829 87.6 Frozen Full
SALAD’ [12] 922 964 970 |76.0 89.2 920 |951 985 99.1 |921 962 96.5
EMVP-L’® (Ours) 939 973 97.6 | 784 89.7 924 | 965 991 995 | 946 97.5 984 Ground Truth- Top 1 Top 2 Top 3
(b) Comparison with two-stage methods that include a re-ranking stage, marked with *. Occlusion “ > |
Method | MSLS Val | NordLand*+[50] | Pitts30k-test -
R@1 R@5 R@l10 | R@l R@5 R@10 | R@l R@5 R@I10 llumination |
SP-SuperGlue* [56] 78.1 81.9 843 25.8 354 38.2 87.2 94.8 96.4 Change m fasad
Patch NetVLAD¥ [5] 79.5 862 87.7 51.6  60.1 62.8 88.7 945 95.9 ¥ T B
DELG" [57] 83.2  90.0 91.1 513  66.8 69.8 89.9 954 96.7 Perspective u
TransVPR? [10] 86.8 91.2 924 58.8 75.0 78.7 89.0 949 96.2 Change
R2Former? [11] 89.7 950 96.2 60.6 66.8 68.7 91.1 952 96.3
SelaVPR? [13] 90.8 964 97.2 852 955 98.5 928  96.8 97.7 Seasonal ‘
TransVPR w/o re-ranking [10] | 70.8  85.1 89.6 159 38.6 494 73.8  88.1 91.9 Variation
SelaVPR (gobal) [13] 81.7 95.8 96.6 72.3 894 944 90.2 96.1 97.1 BN, o R, AR il
EMVP-L® (Ours) 93.9 97.3 97.6 88.7 97.3 99.3 94.0 97.5 98.2 Figure 4: Query (2ray) and top 3 retrieved frames (green: successful, red: failed). Moreover, one of

the true (bluc) matches is displayed for comparison.

EMVP-B successfully finds the closest match in

Achieving State-of-the-Art performance with minimal trainable parameters. : .
challenging scenarios.



4. Comparison with Different Probing Methods

Table 2: Comparing different backbones and probings. LP, MP, CFP, CN, and DPN¢ indicate
linear probing, moment probing, centroid-free probing, constant normalization, and dynamic power
normalization in probing, respectively. For fairness, results produced by ViT-based models are
obtained by fully fine-tuning the last 4 blocks. Baseline refers to the simplified NetVLAD adapted by
SALAD. The best and the second best results are bolded and underlined, respectively.

. MSLS Val NordLand Pitts250k-test SPED
I Medicd Fea. Dim  Backbone —ar—2es R@l0. R@l R@5 R@0 R@l R@5 R@0 R@l R@5 R@I0
T NetVLAD [4] 32768 ResNetS0 82.6 896  92.0 6 411 533 905 962 974 787 883 914
2 NetVLAD 8192 ViTB  90.1 954 9638 701 865 902 95.4 984 99.1 9.6 954 967
3 NetVLAD 24576 VITB 924 959  96.9 7.8 865 90.1 956 987 993 908 957 967
4 LP 7684256  ViTLB 853 935 95.4 381 553 618 913 969 981 8.0 923 940
5 MP 2048 VIiTB 873 945 964 26 626 700 925 973 985 852 926 946
6 GeM 4096 VITB 854 939 950 354 525 596 89.5 965 980 83.0 921 939
7  Baseline 81924256 VIiTB 903 957  96.1 565 730 786 944 984  99.1 880 947 95.6
8  +CN=Softmax ; - 913 957 964 68.0 820 862 949 983 990 803 949 964
9  +CN=/{, nom. 908 959 966 66.4 809 845 945 981 990 800 939 957
10 +DPNG (i.e., CFP) . 926 9.2 9.8 746 876 913 952 987 993 921 959 972
xT XT
Reduction Reduction
Avg(X)/ =
Maz(X) Bt_.f Y GeM(X) MZ Y Yy % Y
o S Z
=1 a a
X . X -
Linear Linear CN
(a) LP (b) GeM Pooling (c) Baseline (d) CFP (Ours)

Takeaways

First-order methods are inferior to
CFP, due to information loss.

The second-order MP is inferior to
CFP, lacking of leveraging the priors
provided by semantic centroids.

Directly removing centroids using
bilinear pooling leads to a
performance drop.

Increasing the feature dimension of
NetVLAD can significantly enhance
the performance. However, it is
costly when dealing with the storage
of sizable global descriptors.

CN makes this reinterpretation
operation empirically more robust.
And the improvement brought by CN
is dependent on its specific
implementation.



5. Comparison with Different Adapters

Takeaways

Table 3: Comparing different fine-tuning methods. DPN¢ and DPNpR indicate DPN in CFP and .  (yrrent VEMs (i.e., DINOV2) lack
recalibration, respectively. Results of both parallel and sequential versions of DPNgy are reported.
For fairness, only the last 4 blocks can be fine-tuned, and all methods employ the same backbone,
i.e., VIT-B. The best and the second best results are bolded and underlined, respectively.

sufficient zero-shot capabilities for
diverse data in the VPR domain.
SALAD achieves high performance

S Fine-tuning Params. MSLS Val NordLand Pitts250k-test SPED by fully fine-tuning on DINOv2.
Type M) R@1 R@5 R@I10 R@1 R@5 R@I10 R@1 R@5 Re@10 R@1 R@5 R@10
AnyLoc Zero-shot - 68.7 782 81.8 16.1 254 30.4 872 944 96.5 853 944 95.4
SALAD Full 271 922 96.4 97.0 76.0 89.2 92.0 95.1 98.5 99.1 92.1 96.2 96.5 ° 1
CFP +PSRP 014 927 966 969 730 865  89.5 953 986  99.2 913 959  96.9 VPR mgdels are typically deployed
+ DPNg(para.) 0.05 924 965 968 71.8 852 889 954 985  99.1 913 962 967 on mobile robots, and fu]]-parameter
(i.e., EMVP-B) + DPNg(seq.) 0.05 93.2 96.9 97.2 764  88.8 92.1 95.7 98.9 99.3 91.8 96.5 97.4 R .
update approach imposes the higher
demands on communication.
* The sequential DPNy performs
better. This is primarily because the
‘, X sequential method recalibrates the
> ,
PP 0%’ N1 B o ErE B e EP = Z —E B backbone features more thoroughly.
B ——— —E.— | fE — — - — -2 —0o -3 — — —
3 8=k “RTE 8 =R
= = X o e « Compared with SALAD and PSRP,
qq i [y
L g &g O DPNy outperforms them by
1 1 1 1 1 - L} . . .
(a) DPN¢ in CFP (b) DPNy, in recalibration (sequential) S achievin g the best pe rformance while
. R )
Element-wise Power Element-wise Addition (c) DPNy, in recalibration (parallel) saving 64.3% of trainable parameters

(0.14M vs 0.05M).
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