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Motivations and Contributions

Motivations

• Graph data is non-Euclidean, and it’s hard to represent its geometric properties by binary spike trains.

• BPTT training for SNN is non-differentiable and high time latency delay.

• Surrogate gradient with BPTT may cause gradient vanishing and explosion.

• Float operations on the Riemannian manifold contradict the binary property of SNN.

Contributions

• First Graph-SNN on the Riemannian manifolds (MSG) without manifold operations on forward phase.

• New training methods DvM builds relation to the manifold. 

• Avoids high latency and gradient vanishing and explosion.

• Lower energy consumption and effective model performance.

• Theoretically show MSG’s connection to manifold ODEs.



Manifold-valued Spiking GNN

BPTT vs DvM
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Differentiation via Manifold: 

BPTT via spikes：
1. High time steps latency delay

2. Non-differentiable

3. Gradient vanishing/explosion

Differentiation via Manifold:
1. Recurrence-free

2. Differentiable by smooth function

3. Avoid gradient vanishing/explosion



Theory: MSG as Neural ODE Solver

1. MSG approximates a solver of manifold Ordinary Differential Equations (ODEs).

2. Each layer solves the ODE of a smooth path, the endpoint is parameterized by a GNN related to the spikes.

3. Layer-by-layer forwarding solves the manifold ODE from the current chart to the successive chart.



Experiment Results



Visualizations
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