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Background: Concept of PDE

> Forward Problem

O Definition: given the coefficients, initial condition (IC) and L (u(x.£))=0
boundary condition (BC), obtain the solution x,t e Dx[0,T]
O Applications: material property prediction, weather 1C:u(x,t)=g(x),t=0

forecasting, industrial simulation BC:u(x,t) = h(x,t),x € 0D

> Inverse Problem

O Definition: Coefficients a Forward
(1) System Identification: given partially observed solution, ICg Operator L Solution u ]
obtain the coefficients . 4\_/
_ _ _ BC h Inverse
(2) Boundary Inference: given partially observed solution, . J
obtain the IC and BC _
Mapping
O Applications: geological exploration, pollution detection between
Functions!
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Background: Application of PDE

PP
I i

Material Property Prediction Weather Forecasting Industrial Simulation Geological Exploration
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Background: Neural Operator and Transformer

Lu(x)=f(x), xeD A
u(x) =0, xe oD MatMul _
LaG(x:‘) = é"x SoftMax P eniinlinialiinlininlinlinliintile .
| KT :
(La)(x) = | LGNS (Ddy  [Wask oo e |
1 Q | | |EV] = Q ||Exv
- J'Dgx(y)f(y)dy SC:lle == I EIE :
= 1(x) MatMu R ey ! j
b
u(x)= | G,(x. )/ (¥)dy Q KV
Green’s Function Attention (Quadratic) Galerkin-type Attention (Linear)
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Method: Latent Neural Operator (LNO)

» Motivation: Accurate, Efficient and Flexible Neural Operator

O Accurate: We achieve SOTA accuracy on 4 out of 6 forward problem benchmarks and 1 inverse

problem benchmark
O Efficient: We reduce memory usage by 50% and speed up training 1.8 times

O Flexible: We decouple the observation and prediction positions, allowing infinite resolution prediction
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Method: Latent Neural Operator (LNO)

> Data Format

O Observation Sequence: {posm , l( )}l 1, specific observation positions and the corresponding

physical quantity values

O Prediction Sequence: {poséﬁt, lggt i~ » positions to be predicted and the corresponding

ground truth physical quantity values
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Method: Latent Neural Operator (LNO)

» Latent Space: Space where observed sampling points exist, with shape of (N;,,,d + n) for
steady-state systems and (N;,,,d + n + 1) for time-dependent systems. d is the dimension of
spatial coordinate and n is the dimension of the physical quantity.

» Geometric Space: Space where representations of the hypothetical sampling points exist, with
shape of (M, D). M is the number of hypothetical sampling points and D is the dimension of the

representation.
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Method: Latent Neural Operator (LNO)
» 1. Embedding

O Trunk-Projector: encoding {pos(‘) " and {pos"), ?’z";‘t to X € RNVin*Pand P € RNoutXP respectively

O Branch-Projector: encoding {concat(posl(n),posout } in to ¥ € RNinXD
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Method: Latent Neural Operator (LNO)

» Decoupling Property

O The Trunk Projector encodes only position information, enabling the decoupling the positions of
observation sequence and prediction sequence

O During inference, predictions can be made for positions without physical quantity information

O It allows for operations such as interpolation and extrapolation (key for solving inverse problem)
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Method: Latent Neural Operator (LNO)

» 2. Encoding

O We assume that the N;;, sampling points in the geometric space can be represented as
representations of M hypothetical sampling points in the latent space.

O We let the latent space positions serve as queries, the geometric space positions as keys, and the

concatenation of geometric space positions and physical quantities as values.

Physics-Cross-Attention (PhCA):

HW,WEXT
AR softmax< ¢ K >YWV = softmax(W, XT)YW,,, 2% € RM*P
VD
PhCA Encoder PhCA Decoder
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Method: Latent Neural Operator (LNO)

» 3. Transforming
O We use the self attention mechanism as a kernel integral operator and stack Transformer

blocks to learn the mapping from input functions to output functions in the latent space.

Z' = SelfAttention(LayerNorm(Z!~1)) + zZ!-1
7' = FeedForward(LayerNorm(Z")) + Z*
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Method: Latent Neural Operator (LNO)

» Reduced complexity

O The number of tokens (representations) in the latent space is fixes at M, and the computational
complexity of self attention is 0(M?2D)
O Compared to Transolver, there is no need for transformation in each Transformer Block, reducing

the total computational complexity from O(LMND + LM?D) to O(MND + LM?D)
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Method: Latent Neural Operator (LNO)

» 4. Decoding
O We let the geometric space positions serve as queries, the latent space positions as keys,

and the latent representations as values
O The representations of predicted physical quantities are decoded to obtain the values

through another MLP

Physics-Cross-Attention (PhCA):

PW,WJ HT
Q\/EK )ZWV = softmax(PW,)YW,,, U € RNoutxD
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Results: Forward Problem

: -2 '
Model DC. Relative L2(x107°)
Darcy NS2d Airfoil Elasticity Plasticity Pipe
FNO[14] N 1.08 15.56 / / / / S—
Geo-FNO[44] N 1.08 1556 138 2.29 0.74 0.67
F-FNO*[45] N 075 1151 0.60 1.85 0.27 0.68 l
U-FNO*[46] N 1.28 17.15  1.19 2.13 0.41 0.62 Darcy NS2d
LSM[22] N 065 1535 0.59 2.18 0.25 0.50
Galerkin[20] N 084 1401 1.18 2.40 1.20 0.98
OFormer[29] Y 124 17.05 1.83 1.83 0.17 1.68
GNOT*[21] N 1.04 1340 0.75 0.88 3.19 0.45
FactFormer[30] N 1.09 12.14 0.71 / 3.12 0.60
ONO[31] Y 076 1195 0.61 1.18 0.48 0.52
Transolver™ N 0.58 8.79 0.47 0.62 0.12 0.31 o .
LNO(Ours) Y 049 845 051 0.52 029  0.26 Airfoll Pipe
Metric Model Darcy NS2d  Airfoil Elasticity Plasticity  Pipe g
Paras Coungypy  Transolver 191 533 191 1.91 191 191 ??é A B
aras -ou LNO 0.76 508  1.36 1.42 136 1.36 =\ =
M Gy Tramsolver 1711 17.17 449 1.48 1841  5.94 =
emory LNO 575 158 247 1.39 716  2.89
Time(s/epoch) Transolver 88.68 107.62 19.49 5.66 83.43 25.56
p LNO 3898 57.83 935 5.33 41.62  14.13

Elasticity Plasticity

Achieving SOTA accuracy while reducing memory usage by 50% and speeding up training 1.8 times
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Results: Inverse Problem

Random Observation Complete Solution Complete Solution

Lo in Sub Domain Lo in Sub Domain Lo- in Whole Domain u

Completer | Observation ratio  20% 10% 5% 1% 0.5%

DeepONet[13] 251% 2.59% 2.82% 3.25% 4.82%

GNOT[21] 1.12% 1.39% 1.62% 1.63% 2.56%

LNO(Ours) 0.60% 0.74% 0.77% 1.18% 2.05%
Propagator | Completer G.T. LNO | GNOT | DeepONet

10% 1% | 10% 1% | 10% 1%

DeepONet[13] 134% 8.01% 9.38% | 9.09% 10.80% | 11.14% 13.87%
GNOTI[21] 545% 650% 8.07% | 8.04% 991% | 10.41% 13.45%
LNO(Ours) 373% 5.69% 7.72% | 9.03% 10.98% | 13.11% 15.50%

Achieving SOTA as both completer and propagator. Infinite resolution prediction.
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