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Motivation:

e The human brain:

o continuously learns new things without catastrophic forgetting due to its
plasticity 1,2, 3, 4]

o strengthens more frequently used synaptic connections and eliminates
synaptic connections that are rarely used, a phenomenon called synaptic
pruning [s]

o creates neural pathways to transmit information; different neural pathways [e, 7]
are used to complete different tasks.

e We propose a novel approach in deep reinforcement learning to form distinct
neural pathways for different tasks within one neural network.
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Objective:

e We want to maximize learning capacity of
parameter space for RL agent.

e Our approach aims to identify the
important connections among the neurons
in a deep neural network that allow
accomplishing a specific task.
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Background:

e We leverage insights from recent lottery ticket hypothesis [1, 2, 3, 4] literature to
construct task-specific neural pathways in multitask reinforcement learning in both
online and offline settings.

e Scoring function [2] based on connection sensitivity:
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* We measure the effect of weight 6, on loss function £(6)

* {4 isavector whose qth element equals 6, and all other elements are 0.
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T : selects top k parameters

m: mask allows training task-specific subnetwork
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Neural Pathway

e Neural Pathway (NP):

e Let's define a neural network as f(z, 6)

 Apply mask m to compute neural pathway as f(x, 0 * m)

e For Actor-Critic Network:;

* Actor-Network: 7 ()

e Critic-Network: Q(¢)

e Fornt" task compute two masks:
° my,my
o Actor-network: (6 * mj

o Critic-Network: Q(¢ * my)

Efficient Reinforcement Learning by Discovering Neural Pathways



Data Adaptive Pathway Discovery (DAPD)

Scoring Function: S(6,, D) = ‘Qq 6559090, ) |

Adaptive learning:
1. Use the most recent data D* i —= {(s a,s' r)}l 0
QJ (0, Dt—L:t)
2. Stabilize parameter space update with K moving average:

4
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Updated Mask:
m=Ti( % S § k0, DV E)
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HaIfCheetah V2

Empirical Proof of Many Lottery [ -
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e DAPD switch in-between multiple
subnetwork during warm-up phase.

Episodic Return

e |tis essential to Freeze the 00 OTS‘"‘“G 25 05 0‘ “ TE 1 00
sub-network once reached a Gradient Updates  1e6

good-performance (episodic reward,
a hyper-parameter).
e Fig 2 supports our hypothesis:

o There exists many sub-networks,
which when trained separately
can reach to almost equivalent
performance.
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Data Adaptive Pathway Discovery (DAPD)

We show the importance of having a having Halfcheetah-v2
warm-up and freeze, two stages of training in L0000
Figa®. e
c 8000 -~
Warm-up and Freeze: E sl
e Warm-up : apply the adaptive mask &J 6000
e freeze: Keep the mask fixed for rest of T —- SAC-Dense
the training once achieved a threshold S 4000
performance, a hyper-parameter 2 w/o warmup
‘S 2000 —— wJ/o freeze
Multitask setup: - —— DAPD
e Warm-up: update the mask and 0
corresponding weights independently 416 o b5 ot e o
e Freeze: Fix the mask and merge of the ' Grédient Updates -(1e6) '
weights.
e Compute gradient average for overlapped (a) Learning Curve
mask
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Experimental Setup:

e Environments:
o  Continuous Control:
m  MuJoCo [1]: HalfCheetah, Walker2d, Ant, Hopper
m  MetaWorld [2]: MT10 tasks
e Training step: 1 million gradient step.
e Evaluation:
o  For MuJoCo we compute episodic return
o  For MetaWorld we compute the success-rate of task
completion
o  For Offline RL setup we also report normalized score [3]
w.r.t. training data performance:

score - random score
* 100) .
expert score - random score

normalized score = (

o  We report the mean and standard-deviation over 5
seeds.

1. E Todorov Mujoco: A physics engine for model-based control, 2012
2. Tianhe Yu, Meta-World: A Benchmark and Evaluation for Multi-Task and Meta Reinforcement Learning, 2019
3. Justin Fu, D4RL: Datasets for Deep Data-Driven Reinforcement Learning, 2021
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MuJoCo Benchmark:

e We compare DAPD at 95% sparsity with Dense network along with topology based sparse methods for
RL RiGL[1] and RIx2 [2] on MuJoCo tasks.
o  Topology based sparse method, randomly grow and prune fixed % of parameters
o  Very fragile to specific network sparsity ratio of actor and critic network
e We present the average episodic return over the last 10 evaluations over 5 seeds after 1 million training
steps.
e We show DAPD exceeds other sparse training as well as the Dense network performance

Environment SAC-Dense RiGL RIx2 SAC-DAPD
HalfCheetah-v2  8568.1 £ 1043.56  4043.95 £467.88 2333.31 £ 1241.16 9028.02 + 276.31
Walker2d-v2 297249 +£ 169147 260.3 £ 31.16 518.45 + 205.16 3846.3 + 459.82
Hopper-v2 3228.5 + 301.88 174.89 + 8.12 198.29 + 10.39 3359.88 +46.57
Ant-v2 353822 £654.76 9542 + 144 963.68 £+ 6.96 3916.65 £ 502.82

1. Laura Graesser et al. The State of Sparse Training in Deep Reinforcement Learning. 2022.
2. Yigin Tan et al. RLx2: Training a Sparse Deep Reinforcement Learning Model from Scratch. 2023
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Episodic Return

Performance Comparison
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MetaWorld Benchmark:

1.2
e We compare performance of DAPD in MetaWorld multitask . E‘;:g;“zgizumpnon
benchmark with various multitask algorithms. -
. . 2
o  We report the performance in following Table (a) Sos
(]
e  We share the normalized performance and corresponding Bos
energy consumption in Fig (b) g
. . 0.4
o  DAPD can potentially safe 20x energy consumption, g
under the assumption that compute energy is -
proportional to FLOP counts.
OSAC+NPF SAC  PcGrad SAC+ME CARE
i rformance and
Experiments SAC-DAPD SAC-Dense PCGrad SM SAC+ME CARE g:)e':;;néz:zzﬂ':):lon
MT10 tasks 77413 490+73 720422 73+43 74+43 84451
Parameter Counts 17k 340k 340k 135k 344k 486k
FLOPs 16.9Kk 339K 339K 78K 363K 368K
Energy Consumption, Jules k& 20k 20k 20k 21.02k 21.25k

(a) MetaWorld Benchmark
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Offline Benchmark:

(a) MetaWorld Benchmark

Experiment NPF Offline MT Offline MHMT
e  Similar to supervised learning, we can BCQ IQL BCQ IQL BCQ IQL
determine the [ottery subnetwork for MT-10 tasks 100 £ 0.0 97.3 £ 7.17 81.5 +24.15 79.1 +26.81 95.9 + 10.44 96.5 + 7.10
. . . Parameter Counts 67k 54k 1.34M 1.01M 1.38M 1.12M
Offline RL in a single-shot [1]. _ FLOPs 29.4K 53.6k 589K 1073K 629k 1128k
e  We compare the performance of NPF with  Energy Consumption, Joules k 20k 20k 21.25k 21.02k
Multitask (MT) and Multihead-Multitask
(MHMT) baselines in BCQ [2], 1QL[3] 100 100
offline RL algorithms in Table (a) 80 . 80
o  We provide the mean and standard @ 60 ® 60
deviation computer over 5 seeds 2 T &
e  We further compare the performance for 2 2 T 2
BCQ-NPF under (b) mixed datasets and (c) g , m B 5
varying number of training sample S S
: Algorithms
e  The results show NPF to be robust in —an —an e
erformance.  BCQ-MHMT
p —60 -60 B BCO-NPF
Medium-Expert Medium Expert-Replay 10000 50000 100000
Mixed Dataset Training Sample Size

(b) (c)

1. Single-Shot Pruning for Offline Reinforcement Learning, S Y Arnob, R Ohib, S Plis, D Precup, 2021
2. Off-Policy Deep Reinforcement Learning without Exploration, Scott Fujimoto, David Meger, Doina Precup, 2019
3. Offline Reinforcement Learning with Implicit Q-Learning, llya Kostrikov, Ashvin Nair, Sergey Levine, 2021
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Empirical Proof of generalization:

Ant-v2 HalfCheetah-v2
. . . . . € 1000/ — PPO-dense £ 3000{ —— PPO-dense
Algorithmic Generalization: S50 eeooaro 2 | wooar
2 10 & 2000
L 500 RS
. c : B 0 ' 1000
e DAPD is effective with PPO a2 " 2
. . Lu Lu 0
In Contlnuous ContrOI taSkS’ 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Gradient Updatesle6 Gradient Updatesle6
Domain Generalization:
Environment DQN-dense (mean + std) DQN DAPD (mean =+ std)
DemonAttack-v4 17670.33 4 2829.91 20803.33 + 3273.07
e Jo prove domain BreakoutNoFrameskip-v4 346.66 + 12.21 384.0 + 15.80
PongNoFrameskip-v4 20.36 + 0.58 19.09 £ 0.77

generalization, we show
performance of DQN in Atari
domain
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We summarize our contributions as follows:

e  We showcase how to train multiple neural pathways for multi-task RL where the objective is to improve energy efficiency
and reduce the carbon footprint associated with both offline and online RL training.

e We introduce Data Adaptive Pathway Discovery (DAPD), which leverages network sensitivity to adjust pathways in
response to the data distribution shifts encountered in online RL. This capability enables us to identify pathways at high
levels of sparsity and surpass competitive sparse training baselines .

° We demonstrate superior sample efficiency and performance in both single and multi-task RL compared to dense
counterpart. The sparsity in the model induces 20x increase in energy efficiency compared to alternative approaches,
achieved through FLOP count reduction and the utilization of Sparse Matrix Multiplication (SpMM).

e Please check out our paper for more experimental results and discussion.
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