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Motivation

Uncertainty provides valuable insights ot
into how confident a model’s
predictions are.

ground truth MRI

A undersampled MRI

hallucination

Angelopoulos, Anastasios N., et al. "Image-to-image regression with distribution-free uncertainty quantification and applications in imaging." International Conference on Machine Learning. PMLR, 2022.
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For high-stakes applications like MRI /
CT reconstruction, uncertainty serves as
a key indicator for rejection verification
(i.e., whether model predictions should
be verified by a human expert).

Angelopoulos, Anastasios N., et al. "Image-to-image regression with distribution-free uncertainty quantification and applications in imaging." International Conference on Machine Learning. PMLR, 2022.



Objective

We seek to quantify two types of
uncertainty:
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Objective

We seek to quantify two types of
uncertainty:

e Aleatoric uncertainty, which is
irreducible, stems from inherent
variability and randomness in
the problem.

e Epistemic uncertainty relates to
a lack of knowledge and is
reducible with more training
data.
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Problem Definition

Bayesian inference models a distribution of network predictions as the product
between a likelihood (i.e., aleatoric) function and a posterior weight (i.e.,

epistemic) distribution:

T Signal to recover

Observed measurement

p(zly, D) = ] p(zly, 8) p(6|D) d.
N

Y
aleatoric epistemic [0, Model parameters
D

Training dataset



Building a Predictive
Distribution

To build the predictive distribution

p(zly, D) = / p(zly, (6 D)de

we can train an ensemble of generative
models.
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Building a Predictive
Distribution

To build the predictive distribution

p(zly, D) = / p(zly, (6 D)de

we can train an ensemble of generative
models.

We can decompose the predictive
distribution into aleatoric and epistemic

uncertainty, using the law of total variance:
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Building a Predictive
Distribution

To build the predictive distribution

p(zly, D) = / p(zly, (6 D)de

we can train an ensemble of generative
models.

We can decompose the predictive
distribution into aleatoric and epistemic

uncertainty, using the law of total variance:
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The computational cost of training large ensembles is

prohibitively expensive!
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Our Solution: Hyper-Networks



Our Solution: Hyper-Networks

Hyper-networks are networks that generate weights for another “primary”
network.



Our Solution: Hyper-Networks

Hyper-networks are networks that generate weights for another “primary”
network. They can approximate a deep ensemble, at a significantly reduced
computational cost.
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Hyper-Diffusion
Models

We combine hyper-networks with generative
models (i.e., diffusion models) to build a
predictive distribution and estimate
uncertainty.

We validate our method, hyper-diffusion
models (HyperDM), on a toy problem and
then apply it on weather forecastingand CT
reconstruction tasks.

(a) Repeat M times to get ensemble of weights.
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(c) Compute aggregate prediction and uncertainty.
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Validation: Toy Problem

We generate training datasets with
controlled uncertainty using

y = sin(x) +n, n ~ N(0,0?).
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Validation: Toy Problem

We generate training datasets with
controlled uncertainty using

y = sin(x) +n, n ~ N(0,0?).

* Strength of the white noise controls
aleatoric uncertainty.

* Size of the dataset controls epistemic
uncertainty.

Our estimates accurately predict the
ground-truth uncertainty.
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Weather Forecasting

We use our method for out-of-distribution
detection on the ERAS5 dataset.

HyperDM is trained to predict surface
temperature at 6-hour intervals. We
construct an anomalous hotspot over
northeastern Canada and estimate
uncertainty.

Our method’s epistemic uncertainty
estimate highlights the out-of-distribution
feature better than deep ensembles.
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Computed
Tomography

We similarly test HyperDM on the LUNA16 ®
dataset. Anomalous Measurement

Our method is trained to recover high-quality
CT scans from poor sinogram
reconstructions. Out-of-distribution
measurements are created by synthetically
inserting metallic implants near the spine.

Our method’s epistemic uncertainty
estimate highlights the abnormal feature
similarly to a deep ensemble.
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Prediction Quality

We evaluate the predictive distribution’s
accuracy on a hold-out test set using the
structural similarity index (SSIM), peak
signal-to-noise ratio (PSNR) and continuous
ranked probability score (CRPS).

HyperDM performs similarly to, if not better
than, deep ensembles.

Table 2: Ensemble prediction quality on real-world data. The image quality assessment metrics
achieved by each method on a CT reconstruction dataset (i.e., LUNA) and a weather prediction
dataset (i.e., ERAS) are reported below. Best scores are highlighted in red and second best scores are

highlighted in blue.

| LUNA | ERAS
METHOD | SSIM+ PSNR(DB)t CRPS| | SSIMt PSNR (DB)+ CRPS|
MC-DRoOPOUT [16] | 0.77 30.25 0.023 | 0.93 31.34 0.034
DPS-UQ [13] 0.89 34.95 0.01 0.94 32.83 0.013

HYPERDM 0.87 35.16 0.01 0.95 33.15 0.012




Prediction Quality

We evaluate the predictive distribution’s
accuracy on a hold-out test set using the
structural similarity index (SSIM), peak
signal-to-noise ratio (PSNR) and continuous
ranked probability score (CRPS).

HyperDM performs similarly to, if not better
than, deep ensembles.

Additionally, it has a significantly lower
training cost due to the hyper-network.

Table 2: Ensemble prediction quality on real-world data. The image quality assessment metrics
achieved by each method on a CT reconstruction dataset (i.e., LUNA) and a weather prediction
dataset (i.e., ERAS) are reported below. Best scores are highlighted in red and second best scores are
highlighted in blue.

| LUNA | ERAS
METHOD | SSIMT PSNR (DB)T CRPS| | SSIMT PSNR (DB)T CRPS |
MC-DROPOUT [16] 0.77 30.25 0.023 0.93 31.34 0.034
DPS-UQ [13] 0.89 34.95 0.01 0.94 32.83 0.013
HYPERDM 0.87 35.16 0.01 0.95 33.15 0.012

Table 1: Comparison of training and inference times. The time required to train an M = 10
member ensemble on the LUNA16 dataset is shown in the second column. The third column shows
the time required to generate a predictive distribution of size M x N = 1000 for a single input.

METHOD | TRAINING TIME (MINUTES) EVALUATION TIME (MINUTES)
MC-DrorouUT [16] 47.03 3.70
DPS-UQ [13] 441.09 3.31
HyPERDM 48.53 3.18




Summary

We propose HyperDM, a single-model method that can efficiently estimate both
aleatoric and epistemic uncertainty.

* Advantages:

* vs. deep ensembles: HyperDM offers comparable performance at a fraction of the
computational training cost.

* vs. Monte-Carlo dropout: HyperDM predictions and uncertainty estimates significantly
outperform Monte-Carlo dropout.

 vs. Bayesian neural networks: HyperDM training and inference is much faster than Bayesian
neural networks because it doesn’t require per-layer weight sampling.

e Future work:

 Scalability: the number of hyper-network parameters scales proportionally with the size of
the primary network.
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