Conjugate Bayesian Two-step Change Point Detection for Hawkes Process Zeyue Zhang^{1,2}, Xiaoling Lu^{1,2}, Feng Zhou^{1,3*} ¹Center for Applied Statistics and School of Statistics, Renmin University of China ²Innovation Platform, Renmin University of China ³Beijing Advanced Innovation Center for Future Blockchain and Privacy Computing {zhangzeyue, xiaolinglu, feng.zhou}@ruc.edu.cn - 1 Introduction - 2 Methodology - 3 Experiments - 4 Conclusion - 6 Reference Introduction •00 Introduction ### **Background** - Point process data: widely used in finance[1], neuroscience[11], and social networks[7], etc. - Hawkes processes[5]: ability to model self-exciting and clustering behaviors. - Real-world data often exhibit dynamic changes over time [8, 10]. - Change Point Detection (CPD): Identifies shifts in underlying process parameters to address time-varying dynamics. - Existing CPD Methods Limitations: Many methods lack analytical solutions, making them computationally inefficient[2, 6]. # Existing CPD Methods and Our Contribution #### **Our Contribution** - CoBay-CPD Proposal: A conjugate Bayesian two-step method for Hawkes processes using data augmentation, improving accuracy and efficiency in change point detection. - Analytical Gibbs Sampler: Enables closed-form sampling, reducing computational burden. - Experimental Results: Demonstrates accurate and timely detection, proving practical for dynamic event modeling across various scenarios. - 2 Methodology # Hawkes Process with Inhibition ### **Conditional Intensity Function of Hawkes Process:** $$\lambda^*(t) = \mu + \sum_{t_i < t} \phi(t - t_i) \tag{1}$$ Traditional Hawkes processes capture only excitatory interactions. Nonlinear Inhibition: To incorporate inhibition, we use a nonlinear model[9]: $$\lambda^*(t) = \bar{\lambda}\sigma(h(t)), \quad h(t) = \mu + \sum_{t_i < t} \phi(t - t_i).$$ Flexible Influence Function: $$\phi(\cdot) = \sum_{b=1}^{B} w_b \tilde{\phi}_b(\cdot) \tag{2}$$ Formulation of h(t) and Probability Density Function: $$h(t) = \mu + \sum_{t_i < t} \phi(t - t_i) = \mu + \sum_{t_i < t} \sum_{b=1}^{B} w_b \tilde{\phi}_b(t - t_i) = \mathbf{w}^{\top} \mathbf{\Phi}(t)$$ (3) $$p(t_{1:N}|\mathbf{w},\bar{\lambda}) = \prod_{i=1}^{N} \bar{\lambda}\sigma(h(t_i)) \exp\left(-\int_{0}^{T} \bar{\lambda}\sigma(h(t))dt\right)$$ $$= \sum_{i=1}^{N} \bar{\lambda}\sigma(h(t_i)) \exp\left(-\int_{0}^{T} \bar{\lambda}\sigma(h(t))dt\right)$$ $$= \sum_{i=1}^{N} \bar{\lambda}\sigma(h(t_i)) \exp\left(-\int_{0}^{T} \bar{\lambda}\sigma(h(t))dt\right)$$ Zeyue Zhang^{1,2}, Xiaoling Lu^{1,2}, Feng Zhou^{1,3}* **Estimation step:** The likelihood for the timestamps $t_{\tau_m:m}$ after the change point: $$p(t_{\tau_m:m}|\mathbf{w},\bar{\lambda}) = \prod_{i=\tau_m}^m \bar{\lambda}\sigma(h(t_i)) \exp\left(-\int_{t_{\tau_m}}^{t_m} \bar{\lambda}\sigma(h(t))dt\right). \tag{5}$$ According to Bayes' theorem, the posterior of model parameters is expressed as: $$p(\mathbf{w}, \bar{\lambda} | t_{\tau_m:m}) \propto p(t_{\tau_m:m} | \mathbf{w}, \bar{\lambda}) p(\mathbf{w}) p(\bar{\lambda}), \tag{6}$$ where we choose the prior of w as Gaussian $p(\mathbf{w}) = \mathcal{N}(\mathbf{w}|\mathbf{0}, \mathbf{K})$ and the prior of $\bar{\lambda}$ as an uninformative improper prior $p(\bar{\lambda}) \propto 1/\bar{\lambda}$. Prediction step: we leverage the posterior of model parameters to compute the predictive distribution of the next timestamp as: $$p(t_{m+1}|t_{\tau_m:m}) = \iint p(t_{m+1}|t_{\tau_m:m},\mathbf{w},\bar{\lambda})p(\mathbf{w},\bar{\lambda}|t_{\tau_m:m})d\mathbf{w}d\bar{\lambda}.$$ (7) This formula calculates the distribution of the next timestamp t_{m+1} given the observed data points. ### Approximation Method: - ① Use MCMC to sample from the posterior distribution of parameters. - **2** Apply the thinning algorithm to sample $\{t_{m+1}^{(k)}\}$, forming a confidence interval. If t_{m+1} falls within it, no change point is detected; otherwise, a change point is inferred. ### Challenge: For non-conjugate Bayesian CPD, the MCMC algorithm in step 1 lacks analytical solutions, reducing computational efficiency and timeliness. **Data Augmentation:** Pólya-Gamma variables and marked Poisson processes. **Augmented Likelihood:** After augmentation, the likelihood becomes: $$p(t_{\tau_m:m}, \boldsymbol{\omega}, \Pi | \mathbf{w}, \bar{\lambda}) = \prod_{i=\tau_m}^{m} [\lambda(t_i, \omega_i) e^{f(\omega_i, h(t_i))}] p_{\lambda}(\Pi | \bar{\lambda}) \prod_{(\omega, t) \in \Pi} e^{f(\omega, -h(t))}$$ (8) **Gibbs Sampling:** With conditional conjugacy, we derive closed-form conditional distributions: $$p(\boldsymbol{\omega}|t_{\tau_m:m}, \mathbf{w}) = \prod_{i=\tau_m}^m p_{PG}(\omega_i|1, h(t_i)),$$ (9a) $$\Lambda(t,\omega|t_{\tau_m:m},\mathbf{w},\bar{\lambda}) = \bar{\lambda}\sigma(-h(t))p_{\mathsf{PG}}(\omega|1,h(t)),\tag{9b}$$ $$p(\bar{\lambda}|t_{\tau_m:m},\Pi) = p_{\mathsf{Ga}}(\bar{\lambda}|N_m + R, T_m), \tag{9c}$$ $$p(\mathbf{w}|t_{\tau_m:m}, \omega, \Pi) = \mathcal{N}(\mathbf{w}|\mathbf{m}, \Sigma).$$ (9d) allowing an efficient Gibbs sampler for posterior sampling. - 3 Experiments **Baselines:** We compare CoBay-CPD with Bayesian CPD methods addressing non-conjugate inference for Hawkes processes: - SMCPD[4]: Combines BCPD and Sequential Monte Carlo (SMC) . - SVCPD[3]: Combines BCPD and Stein variational inference. - SVCPD+Inhibition: Extends SVCPD to include inhibitory effects in a nonlinear Hawkes process. #### Metrics: - False Negative Rate (FNR): Measures the probability of missing a change point, calculated as $1-\frac{\mathsf{True\ Positives}}{\mathsf{True\ Positives}+\mathsf{False\ Negatives}}$. - False Positive Rate (FPR): Measures the probability of incorrectly identifying stable points as change points, calculated as $1 \frac{\mathsf{True}\;\mathsf{Negatives}}{\mathsf{False}\;\mathsf{Positives} + \mathsf{True}\;\mathsf{Negatives}}.$ - Mean Square Error (MSE): Assesses prediction accuracy for the next timestamp, calculated as $\frac{1}{n} \sum_{i=1}^{n} (\bar{t}_{i}^{(k)} t_{i})^{2}$. - Running Time (RT): Evaluates the efficiency of each method by runtime. # Synthetic Data and Results **Synthetic Data:** The synthetic dataset includes three concatenated Hawkes process segments with varying intensity bounds. #### CoBay-CPD Superiority: - Uses nonlinear Hawkes processes with excitation and inhibition, enhancing model expressiveness. - Employs Gibbs sampling for accurate parameter estimation. - Comparisons (SMCPD, SVCPD, SVCPD+Inhibition) rely on linear models and variational methods, reducing accuracy and flexibility. Table 1: The FNR, FPR, MSE and RT of CoBay-CPD and other baselines on the synthetic dataset. | Model | FNR(↓) | FPR(%↓) | MSE(↓) | RT(minute ↓) | |----------|--------------------|-----------------|-----------------|------------------| | SMCPD | 0.38 ± 0.41 | 0.76 ± 0.26 | 0.07 ± 0.01 | 5.50 ± 0.31 | | SVCPD | 0.50 ± 0.35 | 0.76 ± 0.26 | 0.06 ± 0.00 | 7.78 ± 0.01 | | SVCPD+In | hi 0.33 ± 0.24 | 0.60 ± 0.00 | 0.16 ± 0.01 | 23.09 ± 0.60 | | CoBay-CP | 0.13 ± 0.22 | 0.46 ± 0.26 | 0.05 ± 0.00 | 4.62 ± 0.10 | WannaCry Cyber Attack: Over 200,000 computers infected worldwide in 2017, data includes 208 traffic log observations with timestamps. **NYC Vehicle Collisions:** Dataset with approximately 1.05 million records; data from Oct.14th, 2017 was used in experiments. Table 2: The FNR, FPR, MSE and RT of CoBay-CPD and other baselines on real-world datasets. | Model | | Wa | nnaCry | | NYC Vehicle Collisions | | | | | | |------------|-------------------|-----------------------------------|-------------------------------|------------------|------------------------|-----------------------------------|-----------------------------------|------------------|--|--| | | FNR(\dagger) | FPR(↓) | $MSE(\times 10^2 \downarrow)$ | RT(minute ↓) | FNR(↓) | FPR(%↓) | MSE(↓) | RT(minute ↓) | | | | SMCPD | $ 0.38 \pm 0.06 $ | 0.02 ± 0.01 | 3.59 ± 0.08 | 11.65 ± 0.07 | 0.56 ± 0.16 | 2.46 ± 0.55 | 0.02 ± 0.00 | 24.67 ± 0.26 | | | | SVCPD | 0.34 ± 0.12 | 0.01 ± 0.01 | 3.47 ± 0.06 | 9.72 ± 0.06 | 0.58 ± 0.36 | 1.00 ± 0.43 | 0.02 ± 0.00 | 19.30 ± 0.09 | | | | SVCPD+Inhi | 0.54 ± 0.09 | $\textbf{0.00} \pm \textbf{0.00}$ | 3.54 ± 0.06 | 29.76 ± 2.54 | 0.22 ± 0.16 | 1.55 ± 0.36 | 0.17 ± 0.01 | 64.47 ± 1.36 | | | | CoBay-CPD | 0.21 ± 0.04 | 0.05 ± 0.02 | 3.42 ± 0.00 | 6.24 ± 0.49 | 0.13 ± 0.16 | $\textbf{0.89} \pm \textbf{0.16}$ | $\textbf{0.01} \pm \textbf{0.00}$ | 8.70 ± 0.26 | | | ### **Results Summary** - WannaCry Data Result: CoBay-CPD performs best wrt FNR, FPR balance, MSE, and runtime. - NYC Data Result: CoBay-CPD performs best wrt FNR, FPR, MSE, and runtime. ### Ablation Study and Stress tests **Ablation Study:**Number of Basis Functions, Confidence Interval, Confidence Interval. Table 3: Ablation study. The FNR, FPR, MSE and RT of CoBay-CPD with different hyperparameters | _ | Metric | Number of Basis Functions | | | Confidence Interval | | | Prior Covariance | | | |---|-------------------|---------------------------|-----------------|-----------------|---------------------|-----------------|-----------------|-------------------|------------------|-------------------| | | Metric | 1 | 2 | 3 | 95% | 90% | 85% | $\sigma^2 = 0.01$ | $\sigma^2 = 0.5$ | $\sigma^{2} = 10$ | | | FNR(1) | | | | | 0.13 ± 0.22 | | | | | | | FPR(% ↓) | 1.07 ± 0.50 | | | | 0.46 ± 0.26 | | | | 0.91 ± 0.30 | | | $MSE(\downarrow)$ | 0.05 ± 0.00 | 0.05 ± 0.00 | | | 0.05 ± 0.00 | 0.04 ± 0.00 | | 0.05 ± 0.00 | 0.05 ± 0.01 | | | RT(minute ↓) | 1.57 ± 0.03 | 2.61 ± 0.08 | 3.62 ± 0.10 | 5.03 ± 0.02 | 4.62 ± 0.10 | 4.50 ± 0.11 | 4.74 ± 0.02 | 4.62 ± 0.10 | 4.41 ± 0.10 | **Stress Tests:** number of change points, number of change points, closeness between adjacent change points(Δt). Table 5: The FNR, FPR and MSE of CoBay-CPD and other baselines on synthetic dataset with different number of change points. | | FNR(‡) | FPR(%-1) | MSE(1) | FNR(‡) | FPR(%-1) | MSE(‡) | FNR(‡) | FPR(%-1) | MSE(‡) | |------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------| | SMCPD | | | | | | | 0.67 ± 0.19 | | | | SVCPD | | | | | | | 0.50 ± 0.32 | | | | SVCPD+lshi | 0.33 ± 0.47 | 1.88 ± 0.63 | 0.08 ± 0.01 | 0.33 ± 0.24 | 0.60 ± 0.00 | 0.16 ± 0.01 | 0.28 ± 0.23 | 1.84 ± 0.50 | 0.09 ± 0.00 | | CoBay-CPD | 0.00 ± 0.00 | 0.43 ± 0.60 | 0.04 ± 0.00 | 0.13 ± 0.22 | 0.46 ± 0.26 | 0.05 ± 0.00 | 0.11 ± 0.14 | 0.31 ± 0.50 | 0.07 ± 0.01 | Table 6: The FNR, FPR and MSE of CoBay-CPD and other baselines on synthetic dataset with different difference between adjacent $\bar{\lambda}$'s $(\Delta \bar{\lambda})$. | | Model | 0.1 | | | | | | | | | |--|------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------| | | | PNR(1) | IPR(% 1) | MSE(1) | FNR(1) | IPR(%-1) | MSE(1) | FNR(1) | IPR(%-1) | MSE(1) | | | SMCPD | | 1.20 ± 0.00 | | 0.50 ± 0.50 | | | | | | | | SVCPD | 1.00 ± 0.00 | 2.41 ± 0.98 | 0.05 ± 0.01 | 0.83 ± 0.37 | 3.29 ± 1.05 | 0.06 ± 0.01 | 0.67 ± 0.47 | 0.63 ± 0.95 | 0.06 ± 0.01 | | | SVCPD+lnhi | 0.67 ± 0.47 | 1.41 ± 0.83 | 0.06 ± 0.00 | 0.33 ± 0.47 | 1.17 ± 0.52 | 0.06 ± 0.00 | 0.33 ± 0.47 | 1.88 ± 0.63 | 0.08 ± 0.01 | | | | | | | | | | | | | Table 7: The FNR, FPR and MSE of CoBay-CPD and other baselines on synthetic dataset with different closeness between two change points (Δt) . | ifferent closeness between two change points (Δt) . | | | | | | | | | | | |---|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|--| | Model | 5 | | | 10 | | | 15 | | | | | | FNR(4) | FPR(%-1) | MSE(‡) | FNR(‡) | FPR(%-1) | MSE(1) | FNR(‡) | FPR(%-L) | MSE(‡) | | | SMCPD | 0.42 ± 0.34 | 0.75 ± 0.75 | 0.03 ± 0.01 | 0.67 ± 0.24 | 0.23 ± 0.52 | 0.05 ± 0.01 | 0.17 ± 0.24 | 1.00 ± 0.83 | 0.07 ± 0.01 | | | SVCPD | 0.42 ± 0.19 | 1.24 ± 0.56 | 0.03 ± 0.01 | 0.75 ± 0.25 | 0.46 ± 0.65 | 0.05 ± 0.01 | 0.08 ± 0.19 | 3.01 ± 1.15 | 0.06 ± 0.01 | | | VCPD+Inhi | 0.58 ± 0.19 | 1.24 ± 1.33 | 0.05 ± 0.01 | 0.25 ± 0.38 | 0.23 ± 0.52 | 0.05 ± 0.00 | 0.17 ± 0.24 | 2.01 ± 1.33 | 0.06 ± 0.00 | | - 4 Conclusion Conclusion - Introduced a novel conjugate Bayesian two-step change point detection method for Hawkes processes, addressing the non-conjugate inference challenge. - Used data augmentation to convert the problem to a conditionally conjugate form, allowing for efficient Gibbs sampling. - Outperformed existing methods in accuracy and efficiency for change point detection. - Contributions offer significant potential for advancing event-driven time series analysis across diverse applications. - Introduction - 2 Methodology - 3 Experiments - 4 Conclusion - **5** Reference - Emmanuel Bacry, Iacopo Mastromatteo, and Jean-François Muzy. Hawkes processes in finance. Market Microstructure and Liquidity. 1(01):1550005. 2015. - [2] David M Blei, Alp Kucukelbir, and Jon D McAuliffe. Variational inference: A review for statisticians. Journal of the American Statistical Association, 112(518):859–877, 2017. - [3] Gianluca Detommaso, Hanne Hoitzing, Tiangang Cui, and Ardavan Alamir. Stein variational online changepoint detection with applications to hawkes processes and neural networks. arXiv preprint arXiv:1901.07987, 2019. - [4] Arnaud Doucet, Adam M Johansen, et al. A tutorial on particle filtering and smoothing: Fifteen years later. Handbook of nonlinear filtering, 12(656-704):3, 2009. - [5] Alan G Hawkes. Spectra of some self-exciting and mutually exciting point processes. Biometrika. 58(1):83–90. 1971. - [6] Radford M Neal. Probabilistic inference using markov chain monte carlo methods. 1993. - [7] Julio Cesar Louzada Pinto, Tijani Chahed, and Eitan Altman. Trend detection in social networks using Hawkes processes. In Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pages 1441–1448. ACM, 2015. - [8] Haoyun Wang, Liyan Xie, Yao Xie, Alex Cuozzo, and Simon Mak. Sequential change-point detection for mutually exciting point processes. Technometrics, 65(1):44–56, 2023. - [10] Feng Zhou, Zhidong Li, Xuhui Fan, Yang Wang, Arcot Sowmya, and Fang Chen. Fast multi-resolution segmentation for nonstationary Hawkes process using cumulants. International Journal of Data Science and Analytics, 10:321–330, 2020. - [11] Feng Zhou, Yixuan Zhang, and Jun Zhu. Efficient inference of flexible interaction in spiking-neuron networks. In 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net. 2021. 1937