Conjugate Bayesian Two-step Change Point Detection for Hawkes Process

Zeyue Zhang^{1,2}, Xiaoling Lu^{1,2}, Feng Zhou^{1,3*}

¹Center for Applied Statistics and School of Statistics, Renmin University of China ²Innovation Platform, Renmin University of China ³Beijing Advanced Innovation Center for Future Blockchain and Privacy Computing {zhangzeyue, xiaolinglu, feng.zhou}@ruc.edu.cn

- 1 Introduction
- 2 Methodology
- 3 Experiments
- 4 Conclusion
- 6 Reference

Introduction •00

Introduction

Background

- Point process data: widely used in finance[1], neuroscience[11], and social networks[7], etc.
- Hawkes processes[5]: ability to model self-exciting and clustering behaviors.
- Real-world data often exhibit dynamic changes over time [8, 10].
- Change Point Detection (CPD): Identifies shifts in underlying process parameters to address time-varying dynamics.
- Existing CPD Methods Limitations: Many methods lack analytical solutions, making them computationally inefficient[2, 6].

Existing CPD Methods and Our Contribution

Our Contribution

- CoBay-CPD Proposal: A conjugate Bayesian two-step method for Hawkes processes using data augmentation, improving accuracy and efficiency in change point detection.
- Analytical Gibbs Sampler: Enables closed-form sampling, reducing computational burden.
- Experimental Results: Demonstrates accurate and timely detection, proving practical for dynamic event modeling across various scenarios.

- 2 Methodology

Hawkes Process with Inhibition

Conditional Intensity Function of Hawkes Process:

$$\lambda^*(t) = \mu + \sum_{t_i < t} \phi(t - t_i) \tag{1}$$

Traditional Hawkes processes capture only excitatory interactions.

Nonlinear Inhibition: To incorporate inhibition, we use a nonlinear model[9]:

$$\lambda^*(t) = \bar{\lambda}\sigma(h(t)), \quad h(t) = \mu + \sum_{t_i < t} \phi(t - t_i).$$

Flexible Influence Function:

$$\phi(\cdot) = \sum_{b=1}^{B} w_b \tilde{\phi}_b(\cdot) \tag{2}$$

Formulation of h(t) and Probability Density Function:

$$h(t) = \mu + \sum_{t_i < t} \phi(t - t_i) = \mu + \sum_{t_i < t} \sum_{b=1}^{B} w_b \tilde{\phi}_b(t - t_i) = \mathbf{w}^{\top} \mathbf{\Phi}(t)$$
 (3)

$$p(t_{1:N}|\mathbf{w},\bar{\lambda}) = \prod_{i=1}^{N} \bar{\lambda}\sigma(h(t_i)) \exp\left(-\int_{0}^{T} \bar{\lambda}\sigma(h(t))dt\right)$$

$$= \sum_{i=1}^{N} \bar{\lambda}\sigma(h(t_i)) \exp\left(-\int_{0}^{T} \bar{\lambda}\sigma(h(t))dt\right)$$

$$= \sum_{i=1}^{N} \bar{\lambda}\sigma(h(t_i)) \exp\left(-\int_{0}^{T} \bar{\lambda}\sigma(h(t))dt\right)$$

Zeyue Zhang^{1,2}, Xiaoling Lu^{1,2}, Feng Zhou^{1,3}*

Estimation step: The likelihood for the timestamps $t_{\tau_m:m}$ after the change point:

$$p(t_{\tau_m:m}|\mathbf{w},\bar{\lambda}) = \prod_{i=\tau_m}^m \bar{\lambda}\sigma(h(t_i)) \exp\left(-\int_{t_{\tau_m}}^{t_m} \bar{\lambda}\sigma(h(t))dt\right). \tag{5}$$

According to Bayes' theorem, the posterior of model parameters is expressed as:

$$p(\mathbf{w}, \bar{\lambda} | t_{\tau_m:m}) \propto p(t_{\tau_m:m} | \mathbf{w}, \bar{\lambda}) p(\mathbf{w}) p(\bar{\lambda}), \tag{6}$$

where we choose the prior of w as Gaussian $p(\mathbf{w}) = \mathcal{N}(\mathbf{w}|\mathbf{0}, \mathbf{K})$ and the prior of $\bar{\lambda}$ as an uninformative improper prior $p(\bar{\lambda}) \propto 1/\bar{\lambda}$.

Prediction step: we leverage the posterior of model parameters to compute the predictive distribution of the next timestamp as:

$$p(t_{m+1}|t_{\tau_m:m}) = \iint p(t_{m+1}|t_{\tau_m:m},\mathbf{w},\bar{\lambda})p(\mathbf{w},\bar{\lambda}|t_{\tau_m:m})d\mathbf{w}d\bar{\lambda}.$$
(7)

This formula calculates the distribution of the next timestamp t_{m+1} given the observed data points.

Approximation Method:

- ① Use MCMC to sample from the posterior distribution of parameters.
- **2** Apply the thinning algorithm to sample $\{t_{m+1}^{(k)}\}$, forming a confidence interval. If t_{m+1} falls within it, no change point is detected; otherwise, a change point is inferred.

Challenge:

 For non-conjugate Bayesian CPD, the MCMC algorithm in step 1 lacks analytical solutions, reducing computational efficiency and timeliness.

Data Augmentation: Pólya-Gamma variables and marked Poisson processes. **Augmented Likelihood:** After augmentation, the likelihood becomes:

$$p(t_{\tau_m:m}, \boldsymbol{\omega}, \Pi | \mathbf{w}, \bar{\lambda}) = \prod_{i=\tau_m}^{m} [\lambda(t_i, \omega_i) e^{f(\omega_i, h(t_i))}] p_{\lambda}(\Pi | \bar{\lambda}) \prod_{(\omega, t) \in \Pi} e^{f(\omega, -h(t))}$$
(8)

Gibbs Sampling: With conditional conjugacy, we derive closed-form conditional distributions:

$$p(\boldsymbol{\omega}|t_{\tau_m:m}, \mathbf{w}) = \prod_{i=\tau_m}^m p_{PG}(\omega_i|1, h(t_i)),$$
(9a)

$$\Lambda(t,\omega|t_{\tau_m:m},\mathbf{w},\bar{\lambda}) = \bar{\lambda}\sigma(-h(t))p_{\mathsf{PG}}(\omega|1,h(t)),\tag{9b}$$

$$p(\bar{\lambda}|t_{\tau_m:m},\Pi) = p_{\mathsf{Ga}}(\bar{\lambda}|N_m + R, T_m), \tag{9c}$$

$$p(\mathbf{w}|t_{\tau_m:m}, \omega, \Pi) = \mathcal{N}(\mathbf{w}|\mathbf{m}, \Sigma).$$
 (9d)

allowing an efficient Gibbs sampler for posterior sampling.

- 3 Experiments

Baselines: We compare CoBay-CPD with Bayesian CPD methods addressing non-conjugate inference for Hawkes processes:

- SMCPD[4]: Combines BCPD and Sequential Monte Carlo (SMC) .
- SVCPD[3]: Combines BCPD and Stein variational inference.
- SVCPD+Inhibition: Extends SVCPD to include inhibitory effects in a nonlinear Hawkes process.

Metrics:

- False Negative Rate (FNR): Measures the probability of missing a change point, calculated as $1-\frac{\mathsf{True\ Positives}}{\mathsf{True\ Positives}+\mathsf{False\ Negatives}}$.
- False Positive Rate (FPR): Measures the probability of incorrectly identifying stable points as change points, calculated as $1 \frac{\mathsf{True}\;\mathsf{Negatives}}{\mathsf{False}\;\mathsf{Positives} + \mathsf{True}\;\mathsf{Negatives}}.$
- Mean Square Error (MSE): Assesses prediction accuracy for the next timestamp, calculated as $\frac{1}{n} \sum_{i=1}^{n} (\bar{t}_{i}^{(k)} t_{i})^{2}$.
- Running Time (RT): Evaluates the efficiency of each method by runtime.

Synthetic Data and Results

Synthetic Data: The synthetic dataset includes three concatenated Hawkes process segments with varying intensity bounds.

CoBay-CPD Superiority:

- Uses nonlinear Hawkes processes with excitation and inhibition, enhancing model expressiveness.
- Employs Gibbs sampling for accurate parameter estimation.
- Comparisons (SMCPD, SVCPD, SVCPD+Inhibition) rely on linear models and variational methods, reducing accuracy and flexibility.

Table 1: The FNR, FPR, MSE and RT of CoBay-CPD and other baselines on the synthetic dataset.

Model	FNR(↓)	FPR(%↓)	MSE(↓)	RT(minute ↓)
SMCPD	0.38 ± 0.41	0.76 ± 0.26	0.07 ± 0.01	5.50 ± 0.31
SVCPD	0.50 ± 0.35	0.76 ± 0.26	0.06 ± 0.00	7.78 ± 0.01
SVCPD+In	hi 0.33 ± 0.24	0.60 ± 0.00	0.16 ± 0.01	23.09 ± 0.60
CoBay-CP	0.13 ± 0.22	0.46 ± 0.26	0.05 ± 0.00	4.62 ± 0.10

WannaCry Cyber Attack: Over 200,000 computers infected worldwide in 2017, data includes 208 traffic log observations with timestamps.

NYC Vehicle Collisions: Dataset with approximately 1.05 million records; data from Oct.14th, 2017 was used in experiments.

Table 2: The FNR, FPR, MSE and RT of CoBay-CPD and other baselines on real-world datasets.

Model		Wa	nnaCry		NYC Vehicle Collisions					
	FNR(\dagger)	FPR(↓)	$MSE(\times 10^2 \downarrow)$	RT(minute ↓)	FNR(↓)	FPR(%↓)	MSE(↓)	RT(minute ↓)		
SMCPD	$ 0.38 \pm 0.06 $	0.02 ± 0.01	3.59 ± 0.08	11.65 ± 0.07	0.56 ± 0.16	2.46 ± 0.55	0.02 ± 0.00	24.67 ± 0.26		
SVCPD	0.34 ± 0.12	0.01 ± 0.01	3.47 ± 0.06	9.72 ± 0.06	0.58 ± 0.36	1.00 ± 0.43	0.02 ± 0.00	19.30 ± 0.09		
SVCPD+Inhi	0.54 ± 0.09	$\textbf{0.00} \pm \textbf{0.00}$	3.54 ± 0.06	29.76 ± 2.54	0.22 ± 0.16	1.55 ± 0.36	0.17 ± 0.01	64.47 ± 1.36		
CoBay-CPD	0.21 ± 0.04	0.05 ± 0.02	3.42 ± 0.00	6.24 ± 0.49	0.13 ± 0.16	$\textbf{0.89} \pm \textbf{0.16}$	$\textbf{0.01} \pm \textbf{0.00}$	8.70 ± 0.26		

Results Summary

- WannaCry Data Result: CoBay-CPD performs best wrt FNR, FPR balance, MSE, and runtime.
- NYC Data Result: CoBay-CPD performs best wrt FNR, FPR, MSE, and runtime.

Ablation Study and Stress tests

Ablation Study:Number of Basis Functions, Confidence Interval, Confidence Interval.

Table 3: Ablation study. The FNR, FPR, MSE and RT of CoBay-CPD with different hyperparameters

_	Metric	Number of Basis Functions			Confidence Interval			Prior Covariance		
	Metric	1	2	3	95%	90%	85%	$\sigma^2 = 0.01$	$\sigma^2 = 0.5$	$\sigma^{2} = 10$
	FNR(1)					0.13 ± 0.22				
	FPR(% ↓)	1.07 ± 0.50				0.46 ± 0.26				0.91 ± 0.30
	$MSE(\downarrow)$	0.05 ± 0.00	0.05 ± 0.00			0.05 ± 0.00	0.04 ± 0.00		0.05 ± 0.00	0.05 ± 0.01
	RT(minute ↓)	1.57 ± 0.03	2.61 ± 0.08	3.62 ± 0.10	5.03 ± 0.02	4.62 ± 0.10	4.50 ± 0.11	4.74 ± 0.02	4.62 ± 0.10	4.41 ± 0.10

Stress Tests: number of change points, number of change points, closeness between adjacent change points(Δt).

Table 5: The FNR, FPR and MSE of CoBay-CPD and other baselines on synthetic dataset with different number of change points.

	FNR(‡)	FPR(%-1)	MSE(1)	FNR(‡)	FPR(%-1)	MSE(‡)	FNR(‡)	FPR(%-1)	MSE(‡)
SMCPD							0.67 ± 0.19		
SVCPD							0.50 ± 0.32		
SVCPD+lshi	0.33 ± 0.47	1.88 ± 0.63	0.08 ± 0.01	0.33 ± 0.24	0.60 ± 0.00	0.16 ± 0.01	0.28 ± 0.23	1.84 ± 0.50	0.09 ± 0.00
CoBay-CPD	0.00 ± 0.00	0.43 ± 0.60	0.04 ± 0.00	0.13 ± 0.22	0.46 ± 0.26	0.05 ± 0.00	0.11 ± 0.14	0.31 ± 0.50	0.07 ± 0.01

Table 6: The FNR, FPR and MSE of CoBay-CPD and other baselines on synthetic dataset with different difference between adjacent $\bar{\lambda}$'s $(\Delta \bar{\lambda})$.

	Model	0.1								
		PNR(1)	IPR(% 1)	MSE(1)	FNR(1)	IPR(%-1)	MSE(1)	FNR(1)	IPR(%-1)	MSE(1)
	SMCPD		1.20 ± 0.00		0.50 ± 0.50					
	SVCPD	1.00 ± 0.00	2.41 ± 0.98	0.05 ± 0.01	0.83 ± 0.37	3.29 ± 1.05	0.06 ± 0.01	0.67 ± 0.47	0.63 ± 0.95	0.06 ± 0.01
	SVCPD+lnhi	0.67 ± 0.47	1.41 ± 0.83	0.06 ± 0.00	0.33 ± 0.47	1.17 ± 0.52	0.06 ± 0.00	0.33 ± 0.47	1.88 ± 0.63	0.08 ± 0.01

Table 7: The FNR, FPR and MSE of CoBay-CPD and other baselines on synthetic dataset with different closeness between two change points (Δt) .

ifferent closeness between two change points (Δt) .										
Model	5			10			15			
	FNR(4)	FPR(%-1)	MSE(‡)	FNR(‡)	FPR(%-1)	MSE(1)	FNR(‡)	FPR(%-L)	MSE(‡)	
SMCPD	0.42 ± 0.34	0.75 ± 0.75	0.03 ± 0.01	0.67 ± 0.24	0.23 ± 0.52	0.05 ± 0.01	0.17 ± 0.24	1.00 ± 0.83	0.07 ± 0.01	
SVCPD	0.42 ± 0.19	1.24 ± 0.56	0.03 ± 0.01	0.75 ± 0.25	0.46 ± 0.65	0.05 ± 0.01	0.08 ± 0.19	3.01 ± 1.15	0.06 ± 0.01	
VCPD+Inhi	0.58 ± 0.19	1.24 ± 1.33	0.05 ± 0.01	0.25 ± 0.38	0.23 ± 0.52	0.05 ± 0.00	0.17 ± 0.24	2.01 ± 1.33	0.06 ± 0.00	

- 4 Conclusion

Conclusion

- Introduced a novel conjugate Bayesian two-step change point detection method for Hawkes processes, addressing the non-conjugate inference challenge.
- Used data augmentation to convert the problem to a conditionally conjugate form, allowing for efficient Gibbs sampling.
- Outperformed existing methods in accuracy and efficiency for change point detection.
- Contributions offer significant potential for advancing event-driven time series analysis across diverse applications.

- Introduction
- 2 Methodology
- 3 Experiments
- 4 Conclusion
- **5** Reference

- Emmanuel Bacry, Iacopo Mastromatteo, and Jean-François Muzy. Hawkes processes in finance. Market Microstructure and Liquidity. 1(01):1550005. 2015.
- [2] David M Blei, Alp Kucukelbir, and Jon D McAuliffe.
 Variational inference: A review for statisticians.
 Journal of the American Statistical Association, 112(518):859–877, 2017.
- [3] Gianluca Detommaso, Hanne Hoitzing, Tiangang Cui, and Ardavan Alamir. Stein variational online changepoint detection with applications to hawkes processes and neural networks. arXiv preprint arXiv:1901.07987, 2019.
- [4] Arnaud Doucet, Adam M Johansen, et al. A tutorial on particle filtering and smoothing: Fifteen years later. Handbook of nonlinear filtering, 12(656-704):3, 2009.
- [5] Alan G Hawkes.
 Spectra of some self-exciting and mutually exciting point processes.
 Biometrika. 58(1):83–90. 1971.
- [6] Radford M Neal. Probabilistic inference using markov chain monte carlo methods. 1993.
- [7] Julio Cesar Louzada Pinto, Tijani Chahed, and Eitan Altman. Trend detection in social networks using Hawkes processes. In Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pages 1441–1448. ACM, 2015.
- [8] Haoyun Wang, Liyan Xie, Yao Xie, Alex Cuozzo, and Simon Mak. Sequential change-point detection for mutually exciting point processes. Technometrics, 65(1):44–56, 2023.

- [10] Feng Zhou, Zhidong Li, Xuhui Fan, Yang Wang, Arcot Sowmya, and Fang Chen. Fast multi-resolution segmentation for nonstationary Hawkes process using cumulants. International Journal of Data Science and Analytics, 10:321–330, 2020.
- [11] Feng Zhou, Yixuan Zhang, and Jun Zhu. Efficient inference of flexible interaction in spiking-neuron networks. In 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net. 2021.

1937

