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Background

Background

® Point process data: widely used in finance[1], neuroscience[11], and social
networks[7], etc.

® Hawkes processes[5]: ability to model self-exciting and clustering
behaviors.

® Real-world data often exhibit dynamic changes over time [8, 10].

® Change Point Detection (CPD): Identifies shifts in underlying process
parameters to address time-varying dynamics.

® Existing CPD Methods Limitations: Many methods lack analytical
solutions, making them computationally inefficient[2, 6].
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Existing CPD Methods and Our Contribution

Our Contribution

® CoBay-CPD Proposal: A conjugate Bayesian two-step method for Hawkes
processes using data augmentation, improving accuracy and efficiency in
change point detection.

® Analytical Gibbs Sampler: Enables closed-form sampling, reducing
computational burden.

® Experimental Results: Demonstrates accurate and timely detection,
proving practical for dynamic event modeling across various scenarios.
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Hawkes Process with Inhibition

Conditional Intensity Function of Hawkes Process:
t)=pn+y ¢t t) (1)
<t
Traditional Hawkes processes capture only excitatory interactions.
Nonlinear Inhibition: To incorporate inhibition, we use a nonlinear model[9]:

N () = Ro(h(t), h(t)=p+ Y] ot - t).

<t

Flexible Influence Function:

= weds(-) (2)

Formulation of h(t) and Probability Density Function:

B
D=p+d dt—t)=p+> Y wdp(t—t)=w ®(t) (3)

<t <t b=1

p(tun|w, A) = H)\a () exp( / Xo(h ) (4)
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Non-conjugate Bayesian CPD

Estimation step: The likelihood for the timestamps t,,.m after the change
point:

pltryinlw. 3) = ] o(h(t) exp ( /ttm /\a(h(t))dt) (5)

According to Bayes’' theorem, the posterior of model parameters is expressed as:

p(W, 5‘|t‘f‘mim) X p(t—,—m;m|W, j\)p(W)p(X), (6)
where we choose the prior of w as Gaussian p(w) = N/(w[0, K) and the prior of
A as an uninformative improper prior p(A) o< 1/A.

Prediction step: we leverage the posterior of model parameters to compute
the predictive distribution of the next timestamp as:

p(tmsa |Errom) = / / D(tms 1| W, Np(w, Nt m)dwdXe  (7)

This formula calculates the distribution of the next timestamp tmt1 given the
observed data points.
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Non-conjugate Bayesian CPD

Approximation Method:

@ Use MCMC to sample from the posterior distribution of parameters.

@® Apply the thinning algorithm to sample {t,(,:)_l} forming a confidence
interval. If t,,41 falls within it, no change point is detected; otherwise, a
change point is inferred.

Challenge:

® For non-conjugate Bayesian CPD, the MCMC algorithm in step 1 lacks
analytical solutions, reducing computational efficiency and timeliness.
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Conjugate Bayesian CPD (CoBay-CPD)

Data Augmentation: Pdlya-Gamma variables and marked Poisson processes.
Augmented Likelihood: After augmentation, the likelihood becomes:

m

P(trims w, I|w, X) = H[/\(t,»,w;)ef(w”h(t'>>]P>\(H|5\) H of (@ —h(2)) (8)

i=Tm (w,t)ell

Gibbs Sampling: With conditional conjugacy, we derive closed-form
conditional distributions:

p(w|try:m, W) = H pec(will, h(ti)), (92)
A(t, w|tr:m, W, \) = Ao(—h(t))prc(w]|1, h(t)), (9b)
p(5‘|t‘f‘m1m7 H) = PGa(;\‘Nm + Ra Tm)7 (gc)
p(W|tr:m, w, 1) = N(wjm, X). (9d)

allowing an efficient Gibbs sampler for posterior sampling.
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Baselines and Metrics

Baselines: We compare CoBay-CPD with Bayesian CPD methods addressing
non-conjugate inference for Hawkes processes:

® SMCPDJ4]: Combines BCPD and Sequential Monte Carlo (SMC) .
® SVCPDJ[3]: Combines BCPD and Stein variational inference.

® SVCPD+Inhibition: Extends SVCPD to include inhibitory effects in a
nonlinear Hawkes process.

Metrics:
® False Negative Rate (FNR): Measures the probability of missing a

H True Positives
Change point, calculated as 1 — True Positives+-False Negatives *

® False Positive Rate (FPR): Measures the probability of incorrectly

identifying stable points as change points, calculated as
1— True Negatives
False Positives+ True Negatives *

® Mean Square Error (MSE): Assesses prediction accuracy for the next
. 1 —(k) 2
timestamp, calculated as = >°7 (& — t)%.

® Running Time (RT): Evaluates the efficiency of each method by runtime.
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Synthetic Data and Results

Synthetic Data: The synthetic dataset includes three concatenated Hawkes
process segments with varying intensity bounds.
CoBay-CPD Superiority:
® Uses nonlinear Hawkes processes with excitation and inhibition, enhancing
model expressiveness.
® Employs Gibbs sampling for accurate parameter estimation.

® Comparisons (SMCPD, SVCPD, SVCPD+Inhibition) rely on linear
models and variational methods, reducing accuracy and flexibility.

20 . /f/
: SR
Table 1: The FNR, FPR, MSE and RT of CoBay-CPD and other baselines on the synthetic dataset. i of el
Model FNR(])  FPR(%{)  MSE())  RT(minutc ]) L
SMCPD 038 £041 076 £026 0.07£0.01 5.50 £ 031 Elﬂﬂ -
S 050+035 076+£026 006+£000 778001 8 L
SVCPD+Inhi 0334024 0.60+000 0164001 23.09 +0.60 1
CoBay-CPD 013 +£0.22 046 +026 0.05£0.00 4.62=0.10 of —
time
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Real Data and Results

WannaCry Cyber Attack:Over 200,000 computers infected worldwide in 2017,
data includes 208 traffic log observations with timestamps.

NYC Vehicle Collisions: Dataset with approximately 1.05 million records; data
from Oct.14th, 2017 was used in experiments.

Table 2: The FNR, FPR, MSE and RT of CoBay-CPD and other baselines on real-world datasets.

Model | WannaCry | NYC Vehicle Collisions
| ENRQ)  FPR()  MSE(xI10’|) RT(minuel)| FNR()  FPR(%|)  MSE()  RT(minute ])
SMCPD | 0385006 002001 359008 1165+007 | 056016 246055 002+000 2467+026

SVCPD 034 +0.12  0.01 +£0.01 347+ 0.06 9724006 | 0584036 1.00+043 0024000 19.30+0.09
SVCPD+Inhi | 0.54 £0.09 0.00+£0.00 354+006 29.76+2.54 | 022+£0.16 1.55+036 0.17+0.01 6447+ 1.36
CoBay-CPD | 0.21 £0.04 0.05+£002 342+ 0.00 6.24£049 | 0.13£0.16 0.89+£0.16 0.01+0.00 8.70+0.26

Results Summary

® WannaCry Data Result: CoBay-CPD performs best wrt FNR, FPR
balance, MSE, and runtime.

® NYC Data Result: CoBay-CPD performs best wrt FNR, FPR, MSE, and
runtime.
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Ablation Study and Stress tests

Ablation Study:Number of Basis Functions, Confidence Interval, Confidence
Interval.

Table 3: Ablation study. The FNR, FPR, MSE and RT of CoBay-CPD with different hyperparameters.

Mewic | Number of Basis Functions Confidence Interval Prior Covariance
1 2 3 95% 90% 85% 2=001  o2=05
FNR(l) | 0384041 0384022 0134022 (0504000 0134022 0254025 [ 0134022 0.13£022 050 +0.00
FPR(% 1) | 107050 091+030 0.61+0.00 | 046+£026 0.46+026 183043 | 0.76+026 091 £030

MSE() | 0.05+000 0.05+000 0.05+000 | 0.04+000 005+000 0.04+000 | 0.04+000 005000 005+001
RT(minute §) | 1575003 2.61£008 3624£0.0 | 5034002 462£0.10 450+0.11 | 4742002 4622010 41 +0.10

Stress Tests: number of change points, number of change points, closeness
between adjacent change points(At).

Table 5: The FNR, FPR and MSE of CoBay-CPD and other baselines on synthetic dataset with
different number of change points.

' B 3
Mot |

| PR PR MSED | PNR()  FPR® D) MSHD | PN FPRGED  MSR()

SCPD | 1047 0671047 008 1007 [0 1041 076+ 026 017 1 007 | 07 1019 131105 008 1 041

v | 674047 0611095 1061001 | 0504035 000 00103 s nes 013 5008

SVCPDUIohi | 0331047 LESL063 0081001 | 0332028 o1 025 181050 0095000

Colluy CPD | 000000 0432060 0043000 | 0135022 0462026 w 4 031080 007 <ol

Table 6: The FNR, FPR and MSE of CoBay-CPD and other baselines on syn
different difference between adjacent 3's (AX).

Mot |
[

dataset with

PR DS
1202000
2t L0s

R TPRG D) WS
006 £001 |10 2030 070%0 47 0631063 0082003
05000 0051001 | 083103 3% Lis i1 0650% 0062000
0471047 131 T0RS 006 10N | 0551087 117505 o 055047 TR 1063 008 001
100000 1615057 0021000 | 0351043 0355060 0035000 000000 0451060 004000

SMCPD

SVCRD o
Colay cPD

Table 7: The FNR, FPR and MSE of CoBay-CPD and other baselines on syn
different closeness between two change points (.

datasel with

Mot | I

| TR PR MSED | PR FR®D  MSED | PG TR D MSEQ)
e 52075 0034001 | 067502 0232057 0052001 017020 L00L08 007000
SVCPDUnh 0581019 1244 155 00511 025105 0235052 0055000 0172024 2001135 06000
Colly'CPD | 0331024 100070 0014000 | 0002000 0932065 02000 | 035019 080107 0052000
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Conclusion

® |ntroduced a novel conjugate Bayesian two-step change point detection
method for Hawkes processes, addressing the non-conjugate inference
challenge.

® Used data augmentation to convert the problem to a conditionally
conjugate form, allowing for efficient Gibbs sampling.

® Qutperformed existing methods in accuracy and efficiency for change
point detection.

® Contributions offer significant potential for advancing event-driven time
series analysis across diverse applications.
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