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Model size
(# params in Billion

Today’'s models are becoming
larger and larger

4 N
1200 GPT-4 r"l Add & Norm ]
~1T) x
Feed quadratic complexity of
800 I\.’Iega;r;[?guring Forward . . .
(6308) - hidden states dimension
600 \ 1
400
200 Transformer Add & Norm
0 . , : .. , Multi-Head quadratic complexity
Jan-17 Jan-18 Jan-19 Jan-20 Jan-21 Jan-22 Jan-23 Jan-24 A _t ten tion f l h
Time - - - oI sequence engt
Source https://en wikipedia org/wiki/Large language model ——t—
Model size grows in years © Y,

Transformer architecture

High pressure on both training and deployment

Efficient architectures!



Attention has been investigated
much while FFN has not!

» Big FFN module! * Not many works on FFN training!

- over 60% of the Transformer’s parameters - akey component for achieving strong

[1,2].
- 54% of total latency ina 1.3B performance
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- limited knowledge of structured matrices

- even bigger FFN size in Llama-3, Gemma within FEN at a sufficient scale

[1]. FNet: Mixing Tokens with Fourier Transforms
[2]. Attention Is All You Need But You Don’t Need All Of It For Inference of Large Language Models



Structured matrices

Matrices | Example | #Params. | FLOPs | Examples of modern architectures

Dense W @ ‘2} % 1§0) N? O(N?) CNN [25], RNN [26, 19], Transformer [8, 4]

Low-rank UV g) (v 4+ 9 1) | 2NR O(NR) ScatterBrain [9], DeepSeek-V2 [10]

Diagonal D g % E §) N O(N) ACDC [27], SSMs [12, 14]

Block-diagonal K (§ % § g) N72 O(N?z) Monarch [3], Monarch Mixer [28], ShuffleNet [29]
01 02 73 84

Toeplitz T g é z %) 2N —1 O(Nlog N) | TNN [18], Block-Toeplitz [30]

DFT F % :1; _11 _11) 0 O(Nlog N) | BPBP [31], F-Net [2], GFNet [32]

They have not yet been thoroughly explored at a sufficient
scale in modern LLM architecture training




Outline

* Three structured matrices for FFN = Good scaling performance
module in pretraining transformer

language models

o Efficiency study across various scenarios ——  Pre-merge technique

* Optimization challenges —  Self-guided training



Method



Three structured matrices for
efficient and accurate FFN training
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Superscript r: low-rank projection
Superscript b: block-diagonal projection




Three structured matrices: LowRank

N+M N
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[1]. The truth is in there:Improvingreasoning in language models with layer-selective rank reduction Superscript r: low-rank projection

[2]. Lora: Low-rank adaptation of large language models. . . T . .
[3]. Implicit regularization in deep matrix factorization Superscrlpt b: block dlagonal projection




Three structured matrices: BlockShuffle
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[1]. Monarch: Expressive structured matrices for efficient and accurate training. Superscript r: low-rank projeCtion

[2]. Shufflenet: An extremely efficient convolutional neural network for mobile devices. . . A . .
[3]. Mobilenetv2: Inverted residuals and linear bottlenecks Superscrlpt b: block dlagonal proj ection




Three structured matrices: BlockDense
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Superscript r: low-rank projection
Superscript b: block-diagonal projection




Maintaining efficiency during online decoding

* BigT e Small T
- Training, prefilling, decoding with a big - Parallelism-bound FFN during online
batch size decoding
- Reduced FLOPs and parameters can lead - Structured parametrization may lead to worse
to real efficiency gain latency performance

* Pre-merge technique

- Benefited from non-linearity

- Dynamically decide to use (UV)x or U(Vx)

T: number of batches of tokens
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Addressing the optimization challenge

* More difficulties in training structured matrices

- additional symmetries can lead to poor training dynamics

—— LowRank (R=128)

—— LowRank (R=128, self-guided training)
—— Dense
Training U(Vx)

: - E
= 22
Wx 0.3Wx + 0.7U(Vx) UVx) @ -
560 10|00 15|00 20‘OO 25‘00 30100
Training Steps
* Self-guided training
- 0=aWx+ (1 — a)U(Vx), where a decays following a
cosine scheduler
[1]. Exact solutions to the nonlinear dynamics of learning in deep linear neural networks. 12

[2]. Neural networks and principal component analysis: Learning from examples without local minima.



Results: Scaling analyses



Scaling law study: better training FLOPs utilization

LowRank (32% FFN params)
LowRank (63% FFN params)
#  Dense (optimal scaling law)

¢
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(a) LowRank

- Better training FLOPs utilization of the Wide
and Structured network: lower perplexity while
using much fewer parameters

- Steeper scaling curves of Structured FFN up to 1.3B
models: when the x-axis is further extended, we can have
fewer parameters and predict significantly smaller loss

per FLOP.

Method #Param Training FLOPs PPL TP (token/s)
Transformer-m 335M 1.55e+19 18.29 30229
Transformer-m (GQA) 335M 1.55e+19 18.23 84202

Wide and Structured 219M  155e+19  17.89 91147 (8% 1)
Transformer-1 729M 7.03e+19 14.29 23351
Transformer-1(GQA) ~ 729M  7.03e+19 1440 64737
Wide and Structured 464M 7.03e+19 14.27 75930 (17% 1)
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Scaling model size: better downstream performance
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Model size (M)

- Good scaling trend of wide and structured networks in the over-training
regime i.e., 300B tokens.



Results: Efficiency

» Real efficiency gain in Big T case * Small T with the pre-merge technique

50 50 (a) Width=2048 (b) Width=3072 (c) Width=5120 (d) Width=6144
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- BlockShuffle can be slower due to - With a 2048-width FFN, it is difficult to fully utilize
additional shuffle operations. resources on GPU with limited tokens.

- The other two have 1.4x and 2.6x speed-up - With a width 5120 and 6144, 2.81x acceleration of
with 63% and 32% FFN parameters BlockDense with 32% parameters on T = 1536.
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Results: self-guided training

Architecture FFN  Training FLOPs PPL
Transformer-m 201M 1.55e+19 18.29
LowRank 69M 1.01e+19 20.60
LowRank™® 1.21e+19 19.90
BlockDense 65M 1.00e+19 20.85
BlockDense™ 1.19e+19 20.10
BlockShuffle 1.01e+19 21.12
& O6M
BlockShuffle 1.21e+19 20.36

- Apply self-guided training during the first
half of training: consistently reduces loss for

all efficient parametrizations

28
3 L—" Dense
241 L. . Structured Matrix (more tokens)
Structured Matrix (self-guided training)
)
E 20 ~ 7N
N « 'l
> 1 - ‘ N = »
R .{ & ) [./, \_ / .\\
* —
0 5 10 15 20 25 30 35 40 45
Tokens (B)

- Apply self-guided training with matched training

FLOPs: close performance between structured FFN

with 32% parameters and dense models.
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Conclusion

* Scope of our study

- from a training-from-scratch perspective
- scales up models to 1.3B parameters

- conducted within recent Transformer-based LLMs not convolutional architectures.

* Research Objective

- not aimed at identifying the "best" structured matrix

- Investigate common properties of structured matrices: scaling, efficiency and optimization
* Proposed Techniques
- Pre-merge training

- Self-guided training

18
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