No Representation, No Trust

Connecting Representation, Collapse, and Trust Issues in PPO

Skander Moalla¹ Andrea Miele¹ Daniil Pyatko¹ Razvan Pascanu² Caglar Gulcehre¹

2. Google DeepMind

Non-stationarity

A core feature of reinforcement learning

Non-stationarity

Neural networks in deep RL need to adapt to changing distributions

Policy network π_{θ} and value network \hat{v}_w

$$L(w) = \mathbb{E}_{\pi_{\theta_{curr}}} \left[\sum_{t} \left(\hat{v}_{w}(S_{t}) - G_{t} \right)^{2} \right]$$

$$\tilde{J}(\theta) = \mathbb{E}_{\pi_{\theta_{curr}}} \left[\sum_{t} G_t \log \pi_{\theta}(A_t | S_t) \right]$$

 $\mathbb{E}_{\pi_{\theta_{curr}}}$: expectaction over trajectories from the current policy

 S_t : state at timestep t

 A_t : action at timestep t

 G_t : return (sum of rewards) after timestep t

Plasticity/Capacity loss

Same network is less able to fit a sequence of targets than a re-initialized network

Plasticity loss

Same network is less able to learn than a re-initialized network

Abbas, Zaheer, et al. "Loss of plasticity in continual deep reinforcement learning." Conference on Lifelong Learning Agents. PMLR, 2023.

Plasticity loss

Inability to continue learning with non-stationarity

Dohare, Shibhansh, et al. "Maintaining plasticity in deep continual learning." arXiv preprint arXiv:2306.13812 (2023).

Rank collapse

Feature layer's rank decreases rapidly

Diagram adaptep from https://lamarr-institute.org/blog/deep-neural-networks/ Kumar, Aviral, et al. "Implicit under-parameterization inhibits data-efficient deep reinforcement learning." arXiv preprint arXiv:2010.14498 (2020).

Previous work

Non-stationarity is detrimental to deep learning

	Non-stationary supervised learning	RL: Value-based methods (DQN)	RL: Policy optimization (PPO)
Performance Performance collapse Plasticity loss			
Representation Rank decrease Capacity loss			

Open questions

Much more to understand about Proximal Policy Optimization (PPO)

- Are representations affected by non-stationarity?
- How does multi-epoch optimization play with non-stationarity?

$$L_{\pi_{ ext{old}}}^{CLIP}(oldsymbol{ heta}) = \mathbb{E}_{\pi_{ ext{old}}} \left[\sum_{t=0}^{t_{ ext{max}}-1} \min \left(rac{\pi_{oldsymbol{ heta}}(A_t|S_t)}{\pi_{ ext{old}}(A_t|S_t)} \Psi_t, \operatorname{clip} \left(rac{\pi_{oldsymbol{ heta}}(A_t|S_t)}{\pi_{ ext{old}}(A_t|S_t)}, 1 + \epsilon, 1 - \epsilon
ight) \Psi_t
ight)
ight]$$

How can PPO collapse despite its trust region?

Our contributions

PPO suffers from a deteriorating representation that breaks its trust region

	Findings	Implications
Representation Multi-epoch optimization	Collapse Faster collapse	More perspective on plasticity loss
Trust region	X Fails with poor representions	Better understanding of trust-region failure
Interventions	Better representation -> better trust region	Representations should be monitored
Proximal Feature Optimization	Extending trust region to features helps	Design more interventions

Fully reproducible and replicable!

All runs available on W&B and with raw logs and checkpoints!

PPO suffers from deteriorating representations

The collapse is faster with stronger non-stationarity, achieved with more epochs

The trust region fails

It cannot prevent the catastrophic change; it breaks down with a poor representation

Why does the trust region fail?

It's not possible to maintain the trust region with a collapsed representation

$$\{\{x, a_1, A > 0\}, \{y, a_1, A > 0\}\}$$

Diagram from Dohare et al (2023).

Proximal Feature Optimization (PFO)

Extending trust region to features helps

$$L_{\pi_{old}}^{PFO}(\theta) = \mathbb{E}_{\pi_{old}} \left[\sum_{t} \| \phi_{\theta}(S_t) - \phi_{\pi_{old}}(S_t) \|_{2}^{2} \right]$$

PFOBaseline

 $\mathbb{E}_{\pi_{\theta_{curr}}}$: expectaction over trajectories from the current policy S_t : state at timestep t

 $\phi_{ heta}$: feature layer

Interventions to corroborate the connection

Better representation, better trust region, mitigated collapse

Tooling by-product

Template for deploying ML projects on all clusters

- Easily switch between IC HaaS/CaaS, RCP CaaS, SCITAS, CSCS clusters
- Reproduce outside EPFL, Facilitate collaboration

No Representation, No Trust

Connecting Representation, Collapse, and Trust Issues in PPO

Skander Moalla¹ Andrea Miele¹ Daniil Pyatko¹ Razvan Pascanu² Caglar Gulcehre¹

Code Fully reproducible and replicable!

All runs available on W&B and with raw logs and checkpoints!

Easily switch between clusters
Reproduce outside
EPFL, facilitate
collaboration