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Non-stationarity

A core feature of reinforcement learning

https://ale.farama.org/_images/phoenix.qgif https://www.youtube.com/watch?v=3ILULkcBRGO



Non-stationarity

Neural networks in deep RL need to adapt to changing distributions

Policy network 7, and value network v,
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A, action at timestep ¢

3 G,: return (sum of rewards) after timestep ¢




Plasticity/Capacity loss

Same network is less able to fit a sequence of targets than a re-initialized network
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Nikishin, Evgenii, et al. "Deep reinforcement learning with plasticity injection.” Advances in Neural Information Processing Systems 36 (2024).
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Plasticity loss

Same network is less able to learn than a re-initialized network
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Abbas, Zaheer, et al. "Loss of plasticity in continual deep reinforcement learning.” Conference on Lifelong Learning Agents. PMLR, 2023.
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Plasticity loss

Inability to continue learning with non-stationarity

PPO on Ant-v3
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Dohare, Shibhansh, et al. "Maintaining plasticity in deep continual learning." arXiv preprint arXiv:2306.13812 (2023).

6



Rank collapse

Feature layer’s rank decreases rapidly
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Diagram adaptep from https://lamarr-institute.org/blog/deep-neural-networks/
Kumar, Aviral, et al. "Implicit under-parameterization inhibits data-efficient deep reinforcement learning." arXiv preprint arXiv:2010.14498 (2020).
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Previous work

Non-stationarity is detrimental to deep learning

Non-stationary RL: Value-based RL: Policy
supervised learning methods (DQN) optimization (PPO)
Performance
Performance collapse \/ \/ \/

Plasticity loss

Representation 7

Rank decrease \/ \/
Capacity loss ¢




Open questions

Much more to understand about Proximal Policy Optimization (PPO)

* Are representations affected by non-stationarity?

 How does multi-epoch optimization play with non-stationarity??
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 How can PPO collapse despite its trust region?
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Our contributions

PPO suffers from a deteriorating representation that breaks its trust region

Findings

Implications

Representation
Multi-epoch optimization

"\ Collapse
Faster collapse

Trust region

X Fails with poor
representions

Interventions

< Better representation ->

better trust region

Proximal Feature
Optimization

Extending trust region to
features helps

(& More perspective on
plasticity loss

o Better understanding of
trust-region failure

» Representations should be

monitored

» Design more interventions
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PPO suffers from deteriorating representations

The collapse Is faster with stronger non-stationarity, achieved with more epochs
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The trust region fails

It cannot prevent the catastrophic change; it breaks down with a poor representation

ALE/NameThisGame-v5, 4 epochs ALE/NameThisGame-v5, 6 epochs — ALE/NameThisGame-v5, 8 epochs
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Rank policy (PCA)
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Why does the trust region fail?

It’s not possible to maintain the trust region with a collapsed representation
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Diagram from Dohare et al (2023).
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Proximal Feature Optimization (PFO)

Extending trust region to features helps
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Better representation, better trust region, mitigated collapse
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Feature rank policy (PCA)

Interventions to corroborate the connection

Capacity loss policy
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Tooling by-product

Template for deploying ML projects on all clusters

CLAIRE-Labo / =
Q python-mli-research-template Q& g

<> Code (-) Issues 5 19 Pull requests 1

ONNI MR ¢ Use this template ~

A template for starting reproducible Python machine-learning
projects with hardware acceleration. Find an example at
https://github.com/CLAIRE-Labo/no-representation-no-trust

53 MIT, MIT licenses found
vy 68stars Y 4 forks ®© 3 watching ¥ 9 Branches
© 0Tags A Activity (=] Custom properties

i-i Public template repository

e Easily switch between |IC HaaS/Caas,
RCP CaaS, SCITAS, CSCS clusters

 Reproduce outside EPFL, Facilitate
collaboration
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Code Template
Fully reproducible for support!
1E PFL } .Google DeepMind and replicable!
1CLAIRE | Easily switch between
All runs avall_able on clusters
W&B and with raw Reproduce outside
logs and EPFL, facilitate

checkpoints! collaboration
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