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PAC-learning meets time

PAC learning assumes that the distribution of future samples is
identical to the past.

But what if the distribution or goals change over time?
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We propose prospective learning, a theoretical framework
which defines learnability with respect to a stochastic process.
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Prospective learning
Data. zt = (xt, yt) is the datum at time t. Data is drawn from a
stochastic process Z ≡ (Zt)t∈N.

Hypothesis class: A prospective learner selects an infinite
sequence of hypotheses h ≡ (h1, . . . , ht, ht+1, . . . ) where
ht : X 7→ Y .

Prospective loss: Future loss incurred by a hypothesis h

ℓ̄t(h,Z) = lim sup
τ→∞

1

τ

t+τ∑
s=t+1

ℓ(s, hs(Xs), Ys)

Prospective risk: Prospective risk at time t is the expected
future loss

Rt(h) = E
[
ℓ̄t(h,Z) | z≤t

]
=

∫
ℓ̄t(h,Z) dPZ|z≤t
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Prospective learnability

Definition (Strong Prospective Learnability)
A family of stochastic processes is strongly prospectively learnable, if
there exists a learner with the following property: there exists a time
t′(ϵ, δ) such that for any ϵ, δ > 0 and for any stochastic process Z from
this family, the learner outputs a hypothesis h such that

P [Rt(h)−R∗
t < ϵ] ≥ 1− δ,

for any t > t′.
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Prospective learnability

Theorem (Prospective ERM is a strong prospective learner)
Consider a finite family of stochastic processesZ . If we have (a) consistency, i.e., there exists
an increasing sequence of hypothesis classesH1 ⊆ H2 ⊆ . . . with eachHt ⊆ (YX )N such
that ∀Z ∈ Z ,

lim
t→∞

E
[

inf
h∈Ht

Rt(h)−R∗
t

]
= 0, (1)

where h ∈ Ht is a random variable in σ(Z≤t), and (b) uniform concentration of the limsup,
i.e., ∀Z ∈ Z ,

E

[
max
h∈Ht

∣∣∣ℓ̄t(h, Z)− max
ut≤m≤t

1

m

m∑
s=1

ℓ(s, hs(xs), ys)
∣∣∣] ≤ γt, (2)

for some γt → 0 and ut → ∞ with ut ≤ t (all uniform over the family of stochastic
processes), then there exists a sequence it that depends only on γt such that a learner that
returns

ĥ = arg min
h∈Hit

max
uit

≤m≤t

1

m

m∑
s=1

ℓ(s, hs(xs), ys), (3)

is a strong prospective learner for this family. We define Prospective ERM as the learner that

implements (3) given train data z≤t.
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Implementing a prospective learner

We encode absolute time using sines and cosines

t 7→ φ(t) = (sin(ω1t), . . . , sin(ωd/2t), cos(ω1t), . . . , cos(ωd/2t))
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The neural network is a
function of both absolute
time t and input x.

The time encoding can be
concatenated near the
first few closer to the last
few layers.
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Experimental results
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