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AI/Deep Learning on Edge Devices

Deploy ML on edge devices becomes popular:  
    real-time data analysis and low-latency responses 

 e.g., Real-time human health monitoring and robotics



Realistic Scenarios
Adaptive ML is essential

Learn once

Deploy once

Static ML
New data (no labels)

Adjust model
parameters

Test-Time Adaptation

Test-time adaptation (TTA) is a practical solution but challenging 
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2. Adjust model parameters is expensive 
in terms of memory and computation

3. Poor performance with small batch size 
when computational resources are limited
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    memory usage

Memory-efficient TTA

• Update enabled with 
    low memory on GPUs

• Remain memory 
intensive on CPUs

• Model collapse with batch size of one  

• Normalization layers are unavailable on MCUs
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• Efficient, batch-agnostic, and robust TTA on edge devices

• Early-exit ensemble to co-optimize memory footprint and accuracy 

• TinyTTA Engine to enable TTA on MCUs
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TinyTTA Engine

• First-of-its-kind TTA engine on MCUs 

• Optimized to mitigate resource limitations during TTA
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• BP operators support for Tensorflow Lite Micro 

• Layer-wise update strategy to optimize memory efficiency



Experimental Setup

• Datasets

• Architectures

• Baselines
(1) CIFAR10C 
(2) CIFAR100C 
(3) OfficeHome 
(4) PACS

(1) MCUNet 
(2) MobileNetV2_×05 
(3) EfficientNet_b1 
(4) RegNet-200m

(1) Tent (Modulating) 
(2) Tent (Finetune) 
(3) EATA 
(4) CoTTA 
(5) EcoTTA

• Hardwares
(1) MCU: STM32H747  
(2) MPU: RaspberryPi Zero 2 W



Results

57.6%
better

accuracy

6x
Smaller
memory

TinyTTA achieves up to 57.6% higher 
accuracy compared to TENT 

(Modulating) with a batch size of one

TinyTTA achieves up to 6x lower memory 
usage compared to CoTTA with a batch 

size of one
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TinyTTA achieves an average of 4.3% higher 
accuracy compared to a model without update 

with a batch size of one

TinyTTA is the only framework capable of 
performing TTA under an MCU's 512 KB 

memory constraint



Summary & Take-away Messages 

S1. TinyTTA enables efficient, batch-agnostic and robust on-
device TTA for the first time 

T1. Self-ensemble framework and early-exit policy is effective in 
ensuring high TTA accuracy 

T2. TinyTTA Engine enables TTA for diverse MCU applications



Thank you!

Any questions? 
You can find me at: 

hong.jia@unimelb.edu.au 
h-jia.github.io

mailto:hong.jia@unimelb.edu.au
http://h-jia.github.io

