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Stochastic Approximation

e Stochastic Approximation (SA): an iterative method for
root-finding and optimization (Robbins and Monro 1951)

Ok1 = Ok + g (Ok, xx)
® SGD: g(6, x) noisy gradient estimate of the loss function
® TD-learning: policy evaluation algorithm in RL
e Solve for equation E.[g(6*, x)] =0,
where 7 is the stationary distribution of (xx)k>0
e Constant stepsize ax = «
® Fast initial convergence, easy hyperparameter tuning

Ok vs. 60*7 Algorithmic implications?
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Problem Set-up

Ok+1 = Ok + ag(Ok, xk)

® (xk)k>0 is a Markov chain
¢ Uniform ergodicity
e.g., all irreducible, aperiodic, finite-state Markov chain
® Reinforcement learning, correlated data

e Strongly convex (non-linear) g + Smoothness

® [,-regularized logistic regression
® Smooth ReLU regression
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Main Contribution

* Constant stepsize + Markovian (xk)x>0

Ok+1 = Ok + ag (b, xx)

® (Xk,0k)k>0 is a time-homogeneous Markov chain
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Asymptotic Bias Expansion

For some vectors by, by, and b, that are independent of o, we
have the expansion

E[0)] = 6" + a(bn + b + bc) 4 O(a3/2),
where

® b, — nonlinearity of g (Dieuleveut, Durmus, and Bach 2020)

® by — Markovian correlation of (xx) (Huo, Chen, and Xie 2023)
® b. — Markovian correlation x nonlinearity
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Implications for Algorithm Design

® Polyak-Ruppert (PR) averaging

_ 1 k—1
9k = k_/2 Z (91_»
t=k/2

PR-averaging will reduce variance, but not the bias.
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Implications for Algorithm Design

® Polyak-Ruppert (PR) averaging
_ 1 k—1
9[( = k_/2 Z (91_»
t=k/2

PR-averaging will reduce variance, but not the bias.

® To reduce bias, use Richardson-Romberg (RR) extrapolation

G — 20) _ g2

E [(300} - [egg)} —E [ega)}
=2(0" + aBM + 0(a*?)) - (" +2aBD + 0((20)*1%))
= 0* + O(>?).
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Numerical Example

a=0.8 Mkv PR
--- a=0.4 Mkv PR :
--- a=0.2 Mkv PR

~—— a=0.8 Mkv RR '
—— a=0.4 MkvRR |

10° 10 102 10° 10* 108 10° 107

Figure: Presence of Bias in PR and Benefits of RR
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Conclusion

® |nterplay between Markovian data and the nonlinearity in
stochastic approximation (SA) with constant stepsize.

® Practical insights for improving SA algorithms.
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