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Signed distance function (SDF)

• Definition. If  is a subset of a space  with a metric , the SDF  is defined as: 

 

where  denotes the boundary of , and the metric with the boundary is:  

,  

• In the Euclidean space,  is the shortest distance from  to the boundary.

Ω X d f

f(x) = {
−d(x, ∂Ω) if x ∈ Ω
d(x, ∂Ω) if x ∈ Ω∁

∂Ω Ω

d(x, ∂Ω) := inf
y∈∂Ω

d(x, y) x∀ ∈ X

d x

https://en.wikipedia.org/wiki/Signed_distance_function; A slightly different definition is used for consistency.
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Properties in Euclidean space

• For the Euclidean space with piecewise smooth boundary, the SDF is differentiable 
almost everywhere, and its gradient satisfies the eikonal equation: 

 

• Particularly, the gradient of  on the boundary of  is the outward normal vector: 

. 

• Therefore, the SDF is a differentiable extension of the normal vector field.

|∇f | = 1

f Ω

∇f(x) = N(x)

https://en.wikipedia.org/wiki/Signed_distance_function
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Mesh from a SDF

• If an SDF is made up of ReLU-based neural networks, we can extract a mesh from the 
networks by leveraging continuous piecewise affine (CPWA) properties. 

• We utilize the fact that 1) ReLU activation patterns create distinct linear regions, and 
2) each neuron represents a folded hyperplane across these regions. 

👉 Formal descriptions using tropical geometry can be found in Sec. 3 & Appendix A. 

• Since the number of linear regions exponentially grows with the depth of networks, 
Edge subdivision (Berzins, 2023) is an optimal algorithm that iterates over neurons, 
not over the linear regions, while subdividing the current set of edges.
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Motivation

• HashGrid (Müller et al., 2022) exploit trilinear interpolation to achieve fast 
convergence and mitigate spectral bias. 

• Can we still analytically extract 3D mesh from the learned SDF? 

👉 Eikonal constraint makes the parameterized trilinear interpolation continuous piecewise 
affine (CPWA) function (Thm. 4.5 & Coro. 4.6). 

👉 Small high-resolution grids further reduce approximation errors since they can better fit 
curves with finer linear segments. 

• For discussion, we define  as the HashGrid function with a single output.τ(x)
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Hypersurface and eikonal constraint
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Theorem 4.5 (Hypersurface and eikonal constraint). A hypersurface  passing two points 
 while  for the remaining six points. These points form a cube, with  and 

 positioned on the diagonal of the cube. The hypersurface satisfies the eikonal constraint  
for all . Then, the hypersurface of  is a plane.

τ(x) = 0
τ(x0) = τ(x7) = 0 τ(x1…6) ≠ 0 x0

x7 ∥∇τ(x)∥2
2 = 1

x ∈ [0, 1]3 τ(x) = 0

Proof sketch. The eikonal constraint makes the surfaces of an 
SDF smooth and coherent structure. The linearity would make 
planar surfaces. For the proof, we calculate the second 
derivatives of trilinear interpolation to be zeros and find the 
constraints to satisfy the linearity.
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Implications of Thm. 4.5

• To satisfy the eikonal constraint, the following equations are true: 

 

 

 

 

 

where the hash table entries are .

τ(x1) + τ(x6) = 0

τ(x2) + τ(x5) = 0

τ(x3) + τ(x4) = 0

τ(x1) + τ(x2) + τ(x4) = 0

τ(x3) + τ(x5) + τ(x6) = 0

Pi = τ(xi)

Ref. Appendix D Theoretical proofs
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τ(x1) + τ(x6) = 0
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Flatness error

• To satisfy the eikonal constraint, the following equations are true: 

 

 

 

 

 

• The mean absolute error (MAE) of flatness is defined as: 

.

τ(x1) + τ(x6) = 0

τ(x2) + τ(x5) = 0

τ(x3) + τ(x4) = 0

τ(x1) + τ(x2) + τ(x4) = 0

τ(x3) + τ(x5) + τ(x6) = 0

𝔼ℰ[ 1
6 (∥ ∥1 + ∥ ∥1 + ∥ ∥1) +

1
4 (∥ ∥1 + ∥ ∥1)]

Ref. Appendix D Theoretical proofs
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Empirical validations
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Depending on the weight of the eikonal loss
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Discussions

• Fast convergence. Hash table entries are easy to optimize as learnable parameters. 

• Selective learning. Eikonal constraint applies mainly near surfaces, focusing on a 
small subset of space. 

• Online adaptivity. Allocations of hash table entries concentrate on a small region, and 
finer grids will experience fewer collisions while hashing (Müller et al., 2022).
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Visualizations
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Nose-to-nose comparison

MT (Marching Tetrahedra), NDC (Neural Dual Contour; Chen et al., 2022)

15

MC 256 
(92K Vertices as GT)

MC 64 
(5.6K Vertices)

Ours 
(4.5K Vertices)

MT 32 
(4.7K Vertices)

NDC 64 
(5.6K Vertices)



Nose-to-nose comparison

MT (Marching Tetrahedra), NDC (Neural Dual Contour; Chen et al., 2022)

16

MC 256 
(92K Vertices as GT)

MC 64 
(5.6K Vertices)

Ours 
(4.5K Vertices)

MT 32 
(4.7K Vertices)

NDC 64 
(5.6K Vertices)



Deep dive into our paper

• Algorithms describing the whole procedure (Alg. 1 & 2) 

• An approximation to get the intersection of three curved hypersurfaces (Thm. 4.7) 

• Quantitative results on the Stanford 3D Scanning repository (Curless & Levoy, 1996) 
report the Chamfer distance and efficiency, the angular distance, and the time spent. 

• The publicly available code1 allows you to review implementation details for batch 
computations optimized for maximum parallelization.

1 https://github.com/naver-ai/tropical-nerf.pytorch
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• We present novel theoretical insights and a practical methodology for precise mesh 
extraction, employing piecewise trilinear networks. 

• This provides a theoretical exposition of the eikonal constraint, revealing that within 
the trilinear region, the hypersurface transforms into a plane. 

• We hope this novel discovery will inspire future work that explores innovative 
applications and further advancements in the field.

Conclusions
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Thank you all! 
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