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General Online Learning Framework /

Given a finite action set A = [k] .= {1,..., k} and an observation set O

fort=1,2,..., T do
Environment determines a loss function ¢;: A — [0, 1]
Learner selects an action A; € A based on past observations without knowing £;
Learner then suffers a loss ¢;(A;) and observes a feedback o; € O
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Examples of this framework

t=1

S

® expert problem: observe entire loss vectors o = ¢; € [0, 1]"

® multi-armed bandits: observe a loss of chosen arm o; = ¢(A¢)



Follow-the-Regularized-Leader (FTRL)

3/21

A highly powerful framework for such online learning problems

Select an action selection probability vector q; over A
by minimizing the sum of cumulative (estimated) loss ZE;} ?5(q) so far plus convex
regularizer 1:

q€Pk s=1

t—1
g € arg min{zzs(q) + Brw(q)} , Ar~qr

® Py the set of probability distributions over A = [K]

® 3 > 0: (a reciprocal of) learning rate at round t
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A highly powerful framework for such online learning problems

Select an action selection probability vector q; over A
by minimizing the sum of cumulative (estimated) loss ZE;} ?5(q) so far plus convex
regularizer 1:

t—1
g € arg min{zzs(q) + Brw(q)} , Ar~qr

q€Pk s=1

® Py the set of probability distributions over A = [K]

® 3 > 0: (a reciprocal of) learning rate at round t

FTRL can perform adaptively to various properties of underlying loss functions
by designing its regularizer ¢» and learning rate (3;);!
— Q. How to tune the learning rate?



Stability—Penalty Decomposition 4/

The regret of FTRL is roughly bounded as

-
+ Bih + Z(/Bt — Be-1)h

’8 t=2
H,_/
stability term penalty term

e stability term: large when the difference in FTRL outputs, g; and g;11, is large
® penalty term: due to the strength of the regularizer
There is a tradeoff between these two terms.

Examples of z; and h;

When using FTRL with the negative Shannon entropy regularizer —H(-) (Exp3) in
MAB [Aue+02],

penalty is hy = H(q:) or h; = log k, stability is z; = [HEH%V%(%)),J.



Adaptive Learning Rate in the Literature 5/

Adaptive learning rates allow us to achieve various adaptive bounds
e.g., data-dependent bounds (first- order/second order/path-length bounds), best-of-both-worlds bounds
* Use empirical stability (zs)iZ; 1 and worst-case penalty terms hmayx > max; h;
e.g., AdaGrad [MS10; DHS11], first-order algorithms [AHR12], and many!
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const

const + 3t1 heyq
¢ Use both empirical stability and penalty [TIH23b; JLL23; ITH24]

for simultaneous data-dependent bounds and best-of-both-worlds bounds or Tsallis entropy regularizer

Almost all adaptive learning rates are for problems with a minimax regret of ©(+/T)
+> Limited investigation into problems with a minimax regret of ©(T%/3)
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Research Questions /

There are many important online learning problems with a minimax regret of @(T2/3):
® partial monitoring with global observability [BPS11; LS19]

graph bandits with weak observability [Alo+15]

bandits with paid observations [Sel+14]

dueling bandits [SKM21]

online ranking [CT17]

bandits with switching costs [Dek+14]
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There are many important online learning problems with a minimax regret of @(T2/3):
® partial monitoring with global observability [BPS11; LS19]

graph bandits with weak observability [Alo+15]

bandits with paid observations [Sel+14]

dueling bandits [SKM21]

online ranking [CT17]

bandits with switching costs [Dek+14]

Research Question

Can we provide a unified adaptive learning rate framework for online learning with a
minimax regret of @(T2/3), which allows us to achieve a certain adaptivity?



Objective Function that Adaptive Learning aims to Minimize

In online learning with the minimax regret of ©( T2/3), it is common to use forced
exploration for FTRL:
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stability term penalty term bias term

\. J

Goal: construct adaptive learning rate that minimizes (1) under the constraints that
(Bt)t is non-decreasing and (3; depends on (ziy.t, h1.t) or (z1:t—1, h1.t)-

7/ 21



Step 1: Choose Exploration Rate ~; 8/

A naive way: choose 7 = \/z:/[3 so that the stability term and the bias term match.
— this choice does not work well because to obtain a regret bound of (1), a lower bound
of v+ > u+/3; for some u; > 0 is needed.

(This lower bound is used to control the magnitude of the loss estimator /;.)



Step 1: Choose Exploration Rate ~; 8/

A naive way: choose 7 = \/z:/[3 so that the stability term and the bias term match.
— this choice does not work well because to obtain a regret bound of (1), a lower bound
of v+ > u+/3; for some u; > 0 is needed.

(This lower bound is used to control the magnitude of the loss estimator /;.)
Alternative solution: consider the exploration rate of

Ye =" +us/Br for ur >0
With these choices, setting v; = \/m yields

t=1 Nt
T Z u

= Z<2 LA SR Bt1)ht> = F(Br.7,21.7, 1.7, h1.7) -
—1 Bt Bt —

N’ penalty
stability + bias
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Idea: choose [3; so that stability + bias terms and penalty term match! (inspired by
[ITH24])

z u
Inspired by the above matching, consider

e N

Stability—Penalty—Bias Matching (SPB-Matching, Rule 2 in the paper)

Be = fe1+ ;(z T ;:) and e = /z/Be + ue/ By

Assume that when choosing (5;, we have an access to /l;t > hy.

\. J

Designed by following the simple principle of matching the stability, penalty, and bias
elements!



Main Result (1): SPB-matching 10 / 21

Theorem
If learning rate B; is given by SPB-matching, then for alle > 1/ T,

F(ﬂLT,Zl:T,Ul:T,hl:T)

2 2
T 3 2 T 3
5 min (Z zt/i;t—i-l Iog(e T)> aF <\/ zmaxﬁmax/'f) 35 (Z Y Zt//;max>
t=1 t=1

T

+ min Z Ut/f;t_t,_l log(eT)+ \/W,

t=1

T
g Ut hmax
t=1

® Depending on the stability component z; and the penalty component h; simultaneously
e Different from the existing stability—penalty adaptive type bounds

O<\/z;1 z¢he 1 log T) in [TIH23b; JLL23; ITH24]




Application: Best-of-Both-Worlds Algorithms
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Best-of-Both-Worlds (BOBW) algorithm:

achieve a near-optimal regret for stochastic and adversarial envs simultaneously

Regr

stochastic regime

pmm=
Py )

Exp3 O(VT)

UCB O(log T)

T

best-of-both-worlds

Regr

adversarial regime

UCB Q(T)

FTRL is known to be useful for constructing BOBW algorithms.



Main Result (2): 12 /21

BOBW for Problems with a Minimax Regret of @(T2/3)

FTRL with a-Tsallis entropy Hy(p) = & Zl-(:l(p? —pi):

«

G = arg Mingep, { DL p) + Bi(—Ha(p) + B(-Ha(p)) }. @ €(0,1), a=1-a,

Theorem (informal)

The FTRL with SPB-matching 3; for z: and h; satisfying a_condition achieves

(Zmaxh1)Y3T2/3 4+ \/tmaxh1 T adversarial
1/3
Rr < Az Iog(TAz) + (%22” Iog(T—CA)) corrupted stochastic
Az log(T) stochastic

for a problem-dependent constant p > 0. (A: minimum suboptimality gap)



Case Study (1): Partial Monitoring with Global Observability / **

Partial monitoring: a general sequential decision-making problem with limited feedback

Consider PM game G = (£, ®) with k-actions and d-outcomes
for loss matrix £ € [0,1]¥*9, feedback matrix ® € £¥*9 (X: the set of feedback symbols)

Learner observes £ and ¢

fort=1,2,..., T do
Environment determines an outcome x; € {1,...,d}
Learner selects an action A; € A based on past observations without knowing x;
Learner then suffers an unobserved loss L4, », and observes a symbol ®4, ,, € X

Goal: Minimize the regret
_ T T . _ . T
Rr=E|> ;1 Lax — 21 Lar x| for a"=arg MiNcf1,.. k} E[Zt:l ﬁayxt}

There exists a class called globally observable games with minimax regret of @(T2/3),
which is characterized by the relationship between £ and .




Regret bounds for globally observable partial monitoring.
T: the number of rounds, k: the number of actions, A: minimum suboptimality gap,
cg: a game-dependent constant, MS-type: an improved bound by [MS21]

References Stochastic Adversarial Corrupted

[KHN15]  Dlog T - -

[LS20] - (cg T)?/3(log k)1/3 -
2 og T log(k T
[TIH23a] %% Afg( ) (cgT)?3(log T log(kT)Y3 v
2klog T
[TIH24] % (cg T)?/3(log T)V/3 v
2 log klog T
Ours g8 08 (cg T)?/3(log k)1/3 v (MS-type)

AZ




Case Study (2): Graph Bandits with Weak Observability /'

Graph bandits: interpolation and extrapolation of expert problems and multi-armed bandits

Learner observes a directed graph G = (V,E) for V ={1,... k}

fort=1,2,..., T do
Environment determines a loss vector ¢;: V — R
Learner selects an action A; € A based on past observations without knowing ¢;

Learner then suffers a loss ¢(A;) and observes a set of losses {{+(a): (A, a) € E}

' Goal: Minimize the regret Rt

G There exists a class called weakly observable graphs
with minimax regret of ©(T2/3),
characterized by the structure of feedback graph G.

Figure: a weakly observable graph



Regret bounds for weakly observable graph bandits with no self-loops.
T: the number of rounds, k: the number of actions, A: minimum suboptimality gap,
4: domination number (satisfying 6" < §), §*: fractional domination number (satisfying 6* < 4)

References Stochastic Adversarial Corrupted
[Alo+15] - (6 log k)Y/3T2/3 -

[Che+21] - (6% log k)/3T2/3 _

(TH2z) e TloelkT) TA";g(k D) (5los Tlog(kT)AT2
[DWZ23)° ‘S"’gz# (6 log k)Y/3T2/3 v

Ours % (6" log k)1/3T2/3 v (MS-type)

2 A hierarchical reduction-based approach, rather than a direct FTRL method,
discarding past observations as doubling-trick. The variable § can be replaced with §*.



Case Study (3): MAB with Paid Observations /4

MAB with paid observations: a variant of the multi-armed bandits (MAB) problem

fort=1,2,..., T do

Environment determines a loss vector ¢;: [k] — R

Learner observes cost vector c; € R

Learner selects an action A; € [k] and chooses a set of actions S; C [k], for which

we can observe losses.
Learner then suffers a loss /(A¢) + ) ,cs, ¢t and observes a set of losses
{gtf: i € St}

Goal: Minimize the sum of the standard regret and the observation costs Rt given by

.
REF=Rr +E[> > c

t=1 iESt

The minimax regret of this setting is ©(T2%/3).



Upper bounds on R$* for MAB with paid observations.
T: the number of rounds, k: the number of actions, A: minimum suboptimality gap,
c: paid cost for observing a loss of actions

References Stochastic Adversarial Corrupted

[Sel+14] (cklog k)Y/3T?/3+\/Tlogk -

(cklog k)/3T%/34+\/Tlogk v (MS-type)

max{c,1}klogklog T

Ours A2
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Summary /

® Investigated online learning with a minimax regret of ©(T2/3)

® Established a simple and adaptive learning rate framework called
stability—penalty—bias matching (SPB-matching)

e FTRL with SPB-matching and Tsallis entropy regularization improves the existing
BOBW regret bounds based on FTRL
for partial monitoring with global observability, graph bandits with weak observability,
and MAB with paid observations

® Future work: investigate if we can apply SPB-matching to other problems with a
minimax regret of ©(T2/3), such as bandits with switching costs [Dek-+14] and
dueling bandits with Borda winner [SKM21]
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