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Introduction and Motivation

• Transformer models have been popular in solving NLP, CV tasks (Vaswani, 2017; Radford, 2019; Brown 2020).
• However, there is still a generic lack of theoretical understanding of the optimization of Transformer models.
Main Question

1. Which types of Transformer architectures allow Gradient Descent (GD) to achieve guaranteed convergence?

2. What is the key factor in the Transformer that enables the fast convergence?

3. Is there any empirical evidence to support the finding in the answers to the above two questions?

Contributions

• Theoretically prove that: For regression problem modeled by Transformer, with appropriate network size,
structure and initialization, global optimal solution can be found.

• We demonstrates that the activation function and the variables to be optimized as key factors in the
optimization of Transformer model.

Some observations: Different performancewith Gaussian/Softmax Transformer

• Task: IMDb review classification and Pathfinder
• Model: Two-layer transformer with Gaussian/Softmax kernel.
• Conclusion: Training a transformer with Gaussian kernel is easier than Softmax kernel in some cases.
• Question from the observations: Why training Softmax transformers is not efficient in some cases? How to
guarantee training a transformer with faster convergence�

Figure 1. Test performance on text classfication and pathfinder task with different attention kernels. Optimization problem modeled by

Softmax attention transformers can converge slower than Gaussian attention transformers

Problem Description

• Dataset: {(Xi, yi)}N
i=1, Xi ∈ Rn×D is input sequence,

and yi ∈ Rn is label. n is sequence length, D is embed-

ding dimension.

• Model Structure: One-layer Transformer with self-
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• Objective function:
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‖MH(M ; Xi) − yi‖2, (5)

where M := (W Q, W K, W V ) is the set of variables that
can be optimized.
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Convergence and Training Dynamic Analysis

Theorem 1: Solve Problem (5) with Gradient Decent update and M = (W Q, W K, W V ). Suppose HD > Nn,
then there exists initialization and stepsize η, such that at iteration t,

f (Mt; X) ≤ (1 − ηβ)t f (M0; X) , (6)

where β = σ2
min(W O)σ2

min(BT
0 )> 0, σmin(·) is the smallest singular value. and matrix B0 is only related to M0 and

input X .
Remark:

• Only when HD > Nn, β > 0 can hold, which means total number of features is at least sample size times
sequence length.

• The initialization ensures variables start from a near convex region.
• Weights need to move ‘a bit’ in the near convex region to converge to global solution.

Theorem 2: Solve Problem (5) Gradient Decent update and M = {W Q}. Suppose HD > Nn, then there exists
initialization and stepsize η, such that

f (Mt; X) ≤ (1 − ηγ)t f (M0; X) Gaussian attention

f (Mt; X) ≤ f (M0; X) − η
t−1∑
r=0

‖∇W Qf (Mr; X)‖F Softmax attention

where γ is constant related to initialized weights and input.
Remark:

• Optimization problem modeled by classical Softmax attention transformer can be trained to global optimal
solution.

• Softmax attention transformer can have more local solutions, which lead to worse performance than Gaussian
kernel in some cases.

• The difference between attention kernels implies there is vanishing gradient issue in Softmax attention.

Empirical Results on Transformers with Different Attention Kernels

Setting:

• Dataset: Text Classification using the IMDb review dataset and Pathfinder.
• Model: 2-layer Transformer model with the following specifications: embedding dimension D = 64, hidden
dimension d = 128, and number of attention heads H = 2.

• Test Performance:Compute test accuracy and test loss within the training steps with both Softmax and
Gaussian kernel attention on both tasks.

• Landscape Visualization:
• Obtain the model after 20, 000 training steps with Softmax kernel.
• Proceed to train with additional 500 steps with Softmax/Gaussian kernel.
• Choose two varying directions and plot the loss function when parameters change along the two directions.

Landscape Visualization

Figure 3. The loss landscapes on text classification task and Pathfinder task. For both tasks, we use the two-stage training in with the

same training hyperparameters, while the only difference is the attention structure in the second training stage. The two axes represent

the two directions ( W Q and W K). With Softmax attention, the landscape appears more complicated compared with Gaussian kernel

attention.

Conclusion:

• In both tasks, transformers with Gaussian attention exhibit a more smooth landscape compared to transformers
with Softmax attention.

• The complicated landscape of transformers with Softmax attention indicates more potential bad local solutions.

• The landscape visualization provides evidence for Theorem 2, which explains the difference between different
attention kernels.
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