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The proposed text embedding optimization method
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Qualitative Results
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words. The data is ordered by their text embedding similarity.
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Conclusion
1. Examining how text embedding contributes to generated images in text-to-

image diffusion models
2. Demystifying how the causal manner leads to information bias and loss 

while contributing to general information
3. Proposing the Text Embedding Balance Optimization solution containing 

one positive and one negative loss to optimize text embedding for tackling 
information bias with 125.42% improvement in Stable Diffusion

4. Proposing an evaluation metric to measure information loss. Compared to 
the CLIP score for evaluating text-image similarity, and the CLIP-BLIP 
score for evaluating text-text similarity, our evaluation metric provides a 
concrete number for identifying whether the specified object exists in the 
generated image.
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