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BEST-ARM IDENTIFICATION PROBLEM

K-unknown distributions (or arms) are given. Objective is to identify the arm with highest 'ﬂ
mean, a.k.a., the best arm, consuming the minimum no. of samples, with probability of *
lerror atmost 0.

Distributional Assumption: \We assume that instances are from a single parameter exponential
family. Such families can be parameterised using their mean.

o-correctness: An algorithm is said to be o-correct, if for every instance and choice of confidence
parameter 0, the algorithm stops and identifies the best arm correctly with probability at least 1 — 0.

Problem Statement: To design a o-correct algorithm which consumes the minimum no. of
samples for every problem instance.




LOWER BOUND

Theorem: For every instance u = (4, i», - .., Hx) having the first arm as the best arm and every choice of confidence

5, the sample complexity of any o-correct algorithm is lower bounded by:
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Asymptotic Optimality: An algorithm is asymptotically optimal if its sample complexity 75 satisfies:
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for every instance .




EXISTING S-ASYMP. OPTIMAL ALGORITHMS

1. empirically best arm is pulled with probability /

2. minimum empirical index arm (index of arm a is .¥ , = Nd(j1,, x; ,) + N d(i,, X ,)) with

probability 1 — /. ([Jourdan et al., 22] )

3. Stop when the minimum empirical index min .¥ , = log(1/0)+smaller order terms.
a=1

[Russo *16], [Jourdan et al. 22] showed f3-Top Two algorithms are asymptotically f-optimal

(optimal upto giving f-fraction of samples to the best arm). # = 0.5 gives sample complexity of




FIRST-ORDER CONDITIONS
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Theorem: The optimal allocations N* solving O is uniquely characterised by the conditions: |

|
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and index .7 , of every alternative arm a # 1 are equal to log(1/6). Our algorithm tracks these first order conditions. |

1. We call g( - ) the anchor function

2. The optimal allocation is uniquely identified by the conditions:

a. The anchor function g( - ) must be zero

b. Index .7 of all the sub-optimal arms are equal to each other and equal to log(1/0).




ANCHORED TOP-TWO ALGORITHM (AT2)

At every iteration /N do:
*Forced exploration: Sample an arm if it has less than N¥ samples (¢ € (0,1) chosen in the beginning)
*Choice of leader: If g > 0, sample the empirically best arm, otherwise

«Choice of challenger: If g < 0, sample the arm with minimum empirical index .#_

.Stopping Condition (GLLR): Terminate if the minimum index ( min % ) exceeds log(1/0)+smaller order

6175 ibest

terms.




APPROXIMATING ALGO. THROUGH ITS FLUID ANALYSIS

We study the algorithm under an idealised setting where:
1.Mean of all the arms, i.e., yy, W, ..., Ux are known
2.Samples are treated as continuous object

3.0nce we reach ¢ = 0, we stay there

4.0nce index of two arms become equal, they stay equal and increase with the total

sample allocation .




FLUID EQUATIONS

Let N_(/V) be the allocation made to arm a from the total allocation N, B be the set of minimum index arms, and Iz(/V)

be the minimum index.

In the fluid framework, the allocations increase via the following system of ODEs until the minimum index hits the
higher index:
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h(B), h(N), dg are functions of the instance and the allocations (V).
1. Overall path is attained by concatenating the above system of ODEs.

2. After a finite amount of time, all the indexes becomes equal and g becomes zero.

3. The AT2 algorithm closely mimics the fluid dynamics after a random time of finite expectation and converges to

the optimal allocation.




AT2 ALGORITHM MIMICKING THE FLUID BEHAVIOUR
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4 armed Gaussian instance with means [10, 8, 7, 6.5] and unit variance




Sample Complexity
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COMPARISON WITH EXISTING ALGORITHMS

Sample complexity comparison between ATT,
TCB(l) (Tajer and Mukherjee), and f-Top-Two

policies with different values of f.

AT2 improves upon the existing algorithms.

4 armed Gaussian instance with means [10, 8, 7, 6.5] and unit variance
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