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BEST-ARM IDENTIFICATION PROBLEM

-unknown distributions (or arms) are given. Objective is to identify the arm with highest 
mean, a.k.a., the best arm, consuming the minimum no. of samples, with probability of 
error atmost . 
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Distributional Assumption: We assume that instances are from a single parameter exponential 
family. Such families can be parameterised using their mean. 

-correctness: An algorithm is said to be -correct, if for every instance and choice of confidence 
parameter , the algorithm stops and identifies the best arm correctly with probability at least .  

Problem Statement: To design a -correct algorithm which consumes the minimum no. of 
samples for every problem instance.  
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LOWER BOUND

Asymptotic Optimality: An algorithm is asymptotically optimal if its sample complexity  satisfies:   

 

for every instance . 
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Theorem: For every instance  having the first arm as the best arm and every choice of confidence 

, the sample complexity of any -correct algorithm is lower bounded by: 

 

 where . Solution to the above problem is of the form , where  is a 

constant depending only on the instance .
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s.t. ∀a ≠ 1, ℐa = N1d(μ1, x1,a) + Nad(μa, x1,a) ≥ log(1/δ),
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EXISTING -ASYMP. OPTIMAL ALGORITHMSβ

1. empirically best arm is pulled with probability   

2. minimum empirical index arm (index of arm  is ) with 

probability .  ([Jourdan et al., 22] ) 

3. Stop when the minimum empirical index smaller order terms. 

β

a ℐa = N1d( ̂μ1, ̂x1,a) + Nad( ̂μa, ̂x1,a)

1 − β

min
a≠ ̂i

ℐa = log(1/δ)+

 [Russo ’16], [Jourdan et al. ’22] showed -Top Two algorithms are asymptotically -optimal 

(optimal upto giving -fraction of samples to the best arm).  gives sample complexity of 

atmost twice of the lower bound (see [Russo ’16]). 
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FIRST-ORDER CONDITIONS

Theorem: The optimal allocations  solving   is uniquely characterised by the conditions:  

 

and index  of every alternative arm  are equal to . Our algorithm tracks these first order conditions. 
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− 1 = 0

ℐa a ≠ 1 log(1/δ)

1. We call  the anchor function 

2. The optimal allocation is uniquely identified by the conditions:  

a. The anchor function  must be zero 

b. Index of all the sub-optimal arms are equal to each other and equal to .
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ANCHORED TOP-TWO ALGORITHM (AT2)

At every iteration  do:  

•Forced exploration: Sample an arm if it has less than  samples (  chosen in the beginning) 

•Choice of leader: If , sample the empirically best arm, otherwise 

•Choice of challenger: If , sample the arm with minimum empirical index  

•Stopping Condition (GLLR): Terminate if the minimum index  exceeds smaller order 

terms. 
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Theorem: AT2 algorithm is asymptotically optimal. 



APPROXIMATING ALGO. THROUGH ITS FLUID ANALYSIS

We study the algorithm under an idealised setting where:  

1.Mean of all the arms, i.e.,  are known 

2.Samples are treated as continuous object 

3.Once we reach , we stay there 

4.Once index of two arms become equal, they stay equal and increase with the total 

sample allocation . 
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FLUID EQUATIONS

Let  be the allocation made to arm  from the total allocation ,  be the set of minimum index arms, and  

be the minimum index.  

In the fluid framework, the allocations increase via the following system of ODEs until the minimum index hits the 
higher index: 

 

 are functions of the instance and the allocations ( ).  

1. Overall path is attained by concatenating the above system of ODEs.  

2. After a finite amount of time, all the indexes becomes equal and  becomes zero.  

3. The AT2 algorithm closely mimics the fluid dynamics after a random time of finite expectation and converges to 

the optimal allocation. 
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AT2 ALGORITHM MIMICKING THE FLUID BEHAVIOUR

4 armed Gaussian instance with means [10, 8, 7, 6.5] and unit variance



COMPARISON WITH EXISTING ALGORITHMS

Sample complexity comparison between ATT, 
TCB(I) (Tajer and Mukherjee), and -Top-Two 
policies with different values of .  
  
AT2 improves upon the existing algorithms.  
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4 armed Gaussian instance with means [10, 8, 7, 6.5] and unit variance
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