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Network flow

+ [ransportation
4+ Intrusion detection

+ Network connectivity Flows satisfy capacity and
conservation constraints
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Push-Relabel

Push-Relabel (high level)

Height of a node u estimates length of shortest path

between u and t in the residual graph

» Keeps track of a pre-flow on edges and heights for the nodes
> Algorithm is iterative—while there is a u node with excess tlow
1. Push tlow from u with height h to a node with height h-1 (send tlow

"downhill”/ closer to t) or
2. Increase height of u
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Push-Relabel

Push-Relabel (high level)

» Keeps track of a pre-flow on edges and heights for the nodes
> Algorithm is iterative—while there is a u node with excess tlow
1. Push tlow from u with height h to a node with height h-1 (send tlow
"downhill”/ closer to t) or
2. Increase height of u

O( | V\Z\E\) running time [Goldberg, Tarjan '86] (Or faster 0(\V\2\/\E| ) with heuristics)
Considered the benchmark for max flow algorithms in practice

Why is Push-Relabel so much better in

practice than its theoretical guarantees?
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Learning-augmented algorithms

Goal: find book by author Lewis Carroll, n books total

Vanilla binary search Learning-augmented binary search

PP - QINERENE - §

Start at predicted location

\/

Start in the middle

> Run-time O(log n) > Run-time O(log err)

Algorithm has access to a learned prediction
Prediction can guide the algorithm’s decisions
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Learning-augmented algorithms
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https://algorithms-with-predictions.github.io/

Learning-augmented Push-Relabel

First proof that the gap-relabeling heuristic (popular in
practice) can improve the performance of PR!

Main results:
> Can improve running-time of Push-Relabel with good predicted flows

With predicted flow f, find optimal f* in time O(1 V| min{ ||/ |1, | E1}).

> If optimal f has value <1, can find an optimal flow in time O(7 - | V19,

>~ Apply our algorithm to image segmantation instances. Empirically obtain
speed up using predicted flows, theory is predictive of practice!
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