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Imitation Learning

1H. Beik-Mohammadi, S. Hauberg, G. Arvanitidis, N. Figueroa, G. Neumann, and L. Rozo. Neural contractive dynamical systems. ICLR, 2024.
2https://neptune.ai/blog/self-driving-cars-with-convolutional-neural-networks-cnn



Learning Dynamical Systems

From Demonstrations:

Which Most Closely Follows the Demonstrations:

Learn a System:



Learning Dynamical Systems

From Demonstrations:

Which Most Closely Follows the Demonstrations:

Learn a System:

• Trajectories should all have same endpoint.
• Off data trajectories should smoothly rejoin data trajectories.
• System should be robust to noise.



Contracting Dynamical System

Given                       ,   vector field F is contractive if its flow is a contraction map.

Trajectories of contracting systems:
• Exponentially converge to a fixed point.
• Exponentially converge to each other.
• Are robust to disturbances.

W. Lohmiller and J.-J. E. Slotine. On contraction analysis for non-linear systems. Automatica, 34(6):683–696, 1998



Neural Contractive Dynamical Systems 

H. Beik-Mohammadi, S. Hauberg, G. Arvanitidis, N. Figueroa, G. Neumann, and L. Rozo. Neu-ral contractive dynamical systems. ICLR, 2024.

Parameterizes the Jacobian of the dynamical system

Line-integrate Jacobian to get the vector field: 

Contracting in L2 by construction:



Extended Linearized Contractive Dynamics

• Parameterizes Vector Field, rather than Jacobian.

• Includes anti symmetric component.

• Contracting (in L2)

ELCD model



Non-Euclidean Contracting Dynamics

Contraction is preserved under diffeomorphism, with respect to a different metric.

Use parameterization in latent space and use diffeomorphism to map to data space.

L. Dinh, J. Sohl-Dickstein, and S. Bengio. Density estimation using Real NVP.  (ICLR), 2017. 

Without diffeomorphism With diffeomorphism



Choice in diffeomorphism

Coupling Layers1:

Equipped with Rational Quadratic Splines2:

1L. Dinh, J. Sohl-Dickstein, and S. Bengio. Density estimation using real NVP. ICLR, 2017
2C. Durkan, A. Bekasov, I. Murray, and G. Papamakarios. Neural spline flows. Neurips, 2019



Datasets

1. LASA1: 

2. n-link Pendulum:

3. Rosenbrock:

1A. Lemme, Y. Meirovitch, M. Khansari-Zadeh, T. Flash, A. Billard, and J. J. Steil. Open-source benchmarking for learned reaching motion generation 
in robotics. Paladyn, Journal of Behavioral Robotics, 6(1):30–41, 2015



Results



2-Link Pendulum Phase Plots
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Demonstration Trajectory



Results

Mean and standard deviation of dynamic time warping distance (DTWD) of baselines and ELCD on all  datasets.
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