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Using the state-of-the-art video diffusion architecture Open-Sora, we achieved video prediction pretraining on a
large-scale embodied dataset (OXE). It was then fine-tuned on downstream instruction-action datasets,
enabling applications in visual instruction action prediction, future action prediction, and other downstream tasks.
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Background and Motivation
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We summarized useful structures and key designs from previous methods, such as layer-wise adaptors in
LLMs, more future frames, and scalable datasets.
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Results: Performance on CALVIN Benchmark

Table 1: Zero-shot long-horizon evaluation on CALVIN. A/l denotes that the model is trained
on the entire dataset, including visual data without language annotations, while Lang refers to
training on only the language-labeled data.. Our method outperforms the hierarchical 2D policies
(MCIL [31], HULC [32] and SuSIE [33])) and large-scale 2D transformer-based policies (RT-1 [47]
RoboFlamingo [26] and GR-1 [9]), while also remaining competitive compared to 3D-based policies
(3D Diffusion Policy [34] and 3D Diffuser Actor [35]).

Tasks completed in a row

Method Training Data l 5 3 7l 3 Avg. Len.
3D Diffusion Policy [34] Lang 28.7 2.7 0 0 0 0.31
MCIL [31] All 304 13 0.2 0 0 0.31
HULC [32] All 41.8 165 5.7 19 1.1 0.67
RT-1 [47] Lang 533 222 94 38 1.3 0.9
RoboFlamingo [26]] Lang 824 619 46.6 33.1 235 2.48
SuSIE [33] All 87 69 49 38 26 2.69
GR-1 Lang 854 712 59.6 49.7 40.1 3.06
3D Diffuser Actor [35]] Lang 903.8 80.3 66.2 533 41.2 3:35

VidMan (Ours) Lang 915 764 682 59.2 46.7 342
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Results: Performance on OXE small scale dataset
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Figure 3: Offline Performance. The average accuracy (Avg xyz ang) of xyz accuracy and angle
accuracy and MSE correspond to the left and right y-axes of the graph respectively. All models were
trained on OXE and validated on offline performance across four datasets. VidMan outperformed
Octo-base [[7] by 5.6% on Bridge, 2.6% on Taco Play, 9.9% on Cable Routing, and 9.0% on Autolab
URS. Additionally, Our method also shows improvements over the VidMan-GPT approach.
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