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Introduction

2

Let us consider the following general lossy compression setup:

Instead of expected sample-wise distortion 𝔼[𝑑 𝑋, 𝑌 ], we use the logarithmic-loss 
𝐻 𝑋 𝑌 .
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Minimum Entropy Coupling with Bottleneck (MEC-B)

IMEC-B(pX , pY , R) = max
pT |X , qY |T

I(X; Y )

s.t. X $ T $ Y,

H(T )  R,

P (Y ) = pY ,

P (X) = pX

(4.3)

We explore two special cases of (4.3), where either the encoder or decoder is bypassed. This allows

us to optimize the encoder and decoder separately using these cases.

First, consider the case where the bottleneck is removed, meaning the constraint H(T )  R is

relaxed, or R � H(X). In this scenario, X = T , and the optimization simplifies to:

Minimum Entropy Coupling (MEC)

IMEC(pX , pY ) = max
pY |X

I(X; Y )

s.t. P (Y ) = pY ,

P (X) = pX

(4.4)

This involves identifying the probabilistic coupling pY |X between the marginals pX and pY that

maximizes the obtained mutual information. This problem, as described in (4.4), was introduced

in [47], and further explored in the literature as minimum entropy coupling (MEC), with references

including [16, 20, 54, 48], among others. Thus, we define the original problem presented in (4.3) as

minimum entropy coupling with bottleneck (MEC-B).

Next, consider the case where the decoder is removed, resulting from the relaxation of the output

distribution constraint in (4.3):

Entropy-Bounded Information Maximization (EBIM)

IEBIM(pX , R) = max
pT |X

I(X; T )

s.t. H(T )  R,

P (X) = pX

(4.5)

Similar to minimum entropy coupling, this problem identifies the joint distribution between two ran-

dom variables that maximizes their mutual information. However, rather than imposing a marginal

distribution constraint, it enforces a more flexible entropy constraint on one of the variables.

Lemma 1 provides a decomposition for the mutual information between input and output I(X; Y ),

given the Markov chain X $ T $ Y .

Lemma 1. Given a Markov chain X $ T $ Y :

I(X; Y ) = I(X; T ) + I(Y ; T ) � I(T ; X, Y ) (4.6)

Min. Ent. Coupling

Min. Ent. Coupling w/ Bottleneck

Chapter 4
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Bottleneck

4.1 Introduction

Consider the following Markov Chain modeling a general lossy compression framework:

X
pT |X
���! T

qY |T
���! Y (4.1)

Here, the input X, with a marginal distribution pX , is encoded by the probabilistic encoder pto

generate the code T . Subsequently, the probabilistic decoder qreconstructs Y from T . The objective

is to identify the encoder and decoder that minimize the distortion between X and Y , subject to a

constraint on the expected code length H(T ).

It is common to measure the sample-wise distortion via direct comparison of (x, y) pairs through a

distortion function d(·, ·), and consider the expectation E [d(X, Y )] as a measure of average distortion.

Instead, we propose using log-loss H(X|Y ), or equivalently I(X; Y ), as an alternative metric to

enforce the distortion constraint. Consequently, the optimization problem is formulated as follows:

min
pT |X , qY |T

H(X|Y )

s.t. X $ T $ Y,

H(T )  R,

P (X) = pX

(4.2)

It is straightforward to check that the optimal solution of (4.2) is achieved when T = Y , with the

identity decoder. To address this issue of decoder collapse, we introduce a constraint on the output

marginal distribution, P (Y ):
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Decomposition
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Min. Ent. Coupling w/ Bottleneck (MEC-B)

Entropy-bounded Info. Max. (EBIM) 
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max
qY |T

I(Y ;T ) (1)
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Entropy-Bounded Info. Max. (EBIM) 

IEBIM(pX , R) → R

IEBIM(pX , R) = R →↑ ↓g : X ↔ T s.t. H(g(X)) = R

IEBIM(pX , R) = R →↑ ↓g : X ↔ T s.t. H(g(X)) = R

Theorem 1

Upper bound

IEBIM(pX , R) = max
pXT

I(X;T )

s.t. H(T ) → R,

P (X) = pX𝑇 
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Theorem 3

Around a deterministic mapping 𝑇 = 𝑔(𝑥), 
defines transformations resulting in optimal 
solutions for 
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Figure 4.2: Obtained I(X; T ) vs. maximum allowed H(T ) for Binomial (left) and Truncated Geo-
metric (right) input distributions.

4.4.2 Optimal Coupling Around Deterministic Mappings

Section 4.4.1 introduced a greedy search algorithm for identifying deterministic mappings with a

guaranteed gap from the optimal. In this section, we identify optimal mappings close to any deter-

ministic mapping. This approach will enable us to bridge the gap between the mappings identified

by Algorithm 5.

Theorem 3. Let pXT defines a deterministic mapping T = g(X), with I(X; T ) = H(T ) = Rg. We

have IEBIM(pX , Rg) = Rg, and for small enough ✏ > 0:

1. IEBIM(pX , Rg + ✏) is achieved by moving an infinitesimal probability mass from the cell with

the smallest column-normalized value, to an empty column of pXT .

2. IEBIM(pX , Rg � ✏) is achieved by moving an infinitesimal probability mass from the smallest

column to the largest column of pXT .

Example. Figure 4.3 depicts an example of optimal solutions in the neighborhood of a deterministic

mapping.
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Deterministic EBIM Solver
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• The number of deterministic mappings in EBIM formulation is 𝑂 𝑛! , where 𝑛 = 𝒳 .

• Iterating over all deterministic mappings is not feasible.
• One should look for carefully constructed search algorithms to find such mappings with 

resulting 𝐼 𝑋; 𝑇  as close as possible to 𝑅.

Algorithm 1 Deterministic EBIM Solver
Input: pX , R
Output: pXT

1: pXT  diag(pX)
2: for i 1 to |pX |� 1 do
3: p(i)s  Merge the two columns with the smallest sum in pXT .
4: I(i)s  Mutual Information imposed by p(i)s .
5: p(i)l  Merge the two columns with the largest sum in pXT .
6: I(i)l  Mutual Information imposed by p(i)l .
7: if I(i)s  R then
8: return p(i)s

9: else if I(i)l  R < I(i)s then
10: return p(i)l
11: else
12: pXT  p(i)l

Theorem 2. If the output of Algorithm 1 yields mutual information bI , then151

IEBIM(pX , R) � bI  h(p2),

where h(·) is the binary entropy function, and p2 denotes the second largest element of pX .152

Let n = |pX |. The procedure outlined in Algorithm 1 establishes a series of deterministic mappings153

p
(1)
s , p

(1)
l

, · · · , p
(n�1)
s , p

(n�1)
l

, corresponding to a decreasing sequence of mutual information values154

I
(1)
s , I

(1)
l

, · · · , I
(n�1)
s , I

(n�1)
l

. The algorithm then picks the mapping with the highest mutual155

information that does not exceed R. The proof involves establishing an upper bound on the gap156

between these successive mutual information values. A formal proof is presented in Section A.3.157

3.2 Optimal Coupling Around Deterministic Mappings158

Section 3.1 introduced a greedy search algorithm designed to identify deterministic mappings with a159

guaranteed and input-dependent gap from the optimal. In this section, we find the optimal couplings160

close to any deterministic mapping. This method allows us to close the gap between the mappings161

identified by Algorithm 1, as will be demonstrated later.162

Theorem 3. Let pXT denoted by a |X | ⇥ |T | matrix, defines a deterministic mapping T = g(X),163

with I(X; T ) = H(T ) = Rg . We have IEBIM(pX , Rg) = Rg , and for small enough ✏ > 0:164

1. IEBIM(pX , Rg + ✏) is attained by transferring an infinitesimal probability mass from the cell165

with the lowest value in a column, after normalizing each column by dividing by its sum, to166

a new column of pXT .167

2. IEBIM(pX , Rg � ✏) is achieved by transferring an infinitesimal probability mass from the168

smallest cell in the column with the lowest sum, to the column with the highest sum in pXT .169
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Figure 1: Example of Theorem 3.

Figure 1 on the right depicts an example of optimal so-170

lutions in the neighborhood of a deterministic mapping.171

While Algorithm 1 effectively identifies deterministic map-172

pings that produce mutual information close to the budget173

R, Theorem 3 can help bridge the remaining gap. More174

specifically, one can begin with a deterministic mapping175

and use two probability mass transformations outlined in176

Theorem 3 to navigate across the I � R plane.177

Figure 2 illustrates this strategy; for pX = [0.7, 0.2, 0.1],178

identifying all 5 possible deterministic mappings is179

straightforward. Applying the transformations from Theo-180

rem 3 then yields various solutions across the I � R plane181

(represented by dashed lines). Subsequently, one can se-182

lect the solution that maximizes mutual information for183

5

5

Theorem 2
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3. �H (p , 1 � p) = �p log p � (1 � p) log(1 � p) = h(p).

Theorem 2. If the output of Algorithm 5 yields mutual information bI, then

IEBIM(pX , R) � bI  h(p2),

where h(·) is the binary entropy function, and p2 denotes the second largest element of pX .

Proof. For the gap to the optimal objective, IEBIM(pX , R) � bI, we have:

. Equation (4.16) IEBIM(pX , R) � bI  R � bI

. Remark 9  max
i2{1,··· ,n�1}

I(i�1)
l

� I(i)
l

. Algorithm 5, Line 6 = max
i2{1,··· ,n�1}

H

✓P
x

P (i�1)
l

◆
� H

✓P
x

P (i)
l

◆

. Definition 2 = max
i2{1,··· ,n�1}

�H

✓
iP

k=1
pk , pi+1

◆

. Lemma 2.1  max
i2{1,··· ,n�1}

�H

 
iP

k=1
pk +

nP
k=i+2

pk , pi+1

!

= max
i2{1,··· ,n�1}

�H (1 � pi+1 , pi+1)

. Lemma 2.3 = max
i2{1,··· ,n�1}

h (pi+1)

. p2, p3, · · · , pn  0.5 = h(p2)

Note that the above bound on the optimality of the proposed algorithm is by no means tight, as it

does not account for the intermediate distributions P (i)
s .

As discussed in Section 4.2, our proposed search method in Algorithm 5 is compared with the encoder

from Shkel et al. (2017) [76]. Our formulation directly imposes an entropy constraint on the code,

whereas the encoding scheme by Shkel et al. limits the code by its alphabet size. In their approach,

the encoder iterates over all input symbols, assigning each one to a message that has accumulated

the smallest total probability up to that point.

Figure 4.2 displays the mutual information obtained for each maximum allowed code rate value,

considering two di↵erent input distributions. As observed, the two methods yield comparable mutual

information in the high-rate regime. However, in the low-rate regime, our proposed algorithm

identifies more mappings and thus significantly outperforms the encoder described in [76].

If the output of Algorithm 5 yields mutual 
information  , then:

where ℎ(·) is the binary entropy function, and 
𝑝" denotes the second largest element of 𝑝𝑋. 
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. p2, p3, · · · , pn  0.5 = h(p2)

Note that the above bound on the optimality of the proposed algorithm is by no means tight, as it

does not account for the intermediate distributions P (i)
s .

As discussed in Section 4.2, our proposed search method in Algorithm 5 is compared with the encoder

from Shkel et al. (2017) [76]. Our formulation directly imposes an entropy constraint on the code,

whereas the encoding scheme by Shkel et al. limits the code by its alphabet size. In their approach,

the encoder iterates over all input symbols, assigning each one to a message that has accumulated

the smallest total probability up to that point.

Figure 4.2 displays the mutual information obtained for each maximum allowed code rate value,

considering two di↵erent input distributions. As observed, the two methods yield comparable mutual

information in the high-rate regime. However, in the low-rate regime, our proposed algorithm

identifies more mappings and thus significantly outperforms the encoder described in [76].
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• We presents a lossy compression framework under logarithmic loss, that extends Min. 
Entropy Coupling (MEC) with a bottleneck.

• We then propose Entropy-Bounded Information Maximization (EBIM) formulation for the 
encoder, extensively characterize the structure of its optimal solution, and provide efficient 
approximate solutions with guaranteed performance.

• We also illustrate the practical application of MEC-B through experiments in Markov 
Coding Games under rate limits.

Minimum Entropy Coupling with Bottleneck


