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Problem

- - - 2 2 T T T
+ Given | 2 | =m < n(n—1)/2 partial distances d;; = ||p; — P;||° = P; Pi: + P; Pj — 2P; Pj ,
(i,j) € Q, (set Q drawn uniformly w/o replacement) between (unknown) points P = [p4, P2, ... P,] € R™"
+ In a compact form, the distance matrix D = 1diag(PP')" + diag(PP')1" —2PP"

» For Grammatrix X = P'P, X;;+X; i—2X,;=D; ; Vi, j,(ij) € Q

The goal Is to reconstruct P



Setup

(Waga X) fOI' € S TN

. Measurement operator A. AX)e = Q2|=m
(W(g_m,g_m), X) for £ > m

w ee, + ejejT — eiejT —eje;, ifa=(ij) €l
a 2(eil" +1e)), if « = (4,1¢) for some 7 € {1,...,n},

e Ground truth X° = PTP

- Standard Coherence factor : I/ [Tasissa and Lai ]

* We solve the rank minimization problem defined by,

min rank(X)
XeS,

Suchthat X > 0 and A(X) = [Dgq;0]



Limitations of Existing work

» Lack of computationally efficient algorithms for Nuclear Norm Minimization(NNM)

» Lack of Restricted Isometry Property (RIP) for Euclidean distance geometry problems

Our Contribution

* An algorithm based on Iteratively reweighted least squares framework (MatrixIRLS1).
It implicitly minimizes smoothed log-det objectives by minimizing a quadratic model

* Local Convergence at optimal sample complexity

* Dual Basis formulation and establishing Restricted Isometry Property (RIP)
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Experiments

10_4 - sl ScaledSGD | |
sl RicEDG
ALM
jo—8 Ltiul o Al 1o s MatrixIRLS
Iterations
10°

104

el ScaledSGD
el RicEDG
ALM
10—8 I *MMIﬂRLS I L I L [ 1 11Lf)
102 101 10° 101 102 103

Runtime in seconds

Protein reconstruction by
MatrixIRLS with 0.5% and 0.6%
samples respectively

 MatrixIRLS shows reconstruction from fewer
samples compared to other methods.

 MatrixIRLS is robust to ill-conditioned data

* TiIme to convergence for MatrixIRLS Is significantly
less than the other methods.
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