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Why Study Curvature?

• Deep neural networks often process sensitive data, and privacy is 
crucial.

• Recent research [1, 2] has shown the link between privacy, input 
curvature and memorization.

• Existing studies focus on loss curvature w.r.t training data. 

• No/limited understanding of input loss curvature on unseen/test 
data.

• Question:

• What does curvature mean for unseen test data?

• What privacy properties does it capture?

• What can it do?

Problem Motivation
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Result from [1] showing link on training data

1. Deepak Ravikumar, Efstathia Soufleri, Abolfazl Hashemi, and Kaushik Roy. “Unveiling Privacy, Memorization, and Input Curvature Links'', In ICML 2024

2. Isha Garg, Deepak Ravikumar, and Kaushik Roy. “Memorization through the lens of curvature of loss function around samples.” In 2024 ICML Spotlight.



What is input loss curvature?

Definition: Input loss curvature is the trace of the Hessian of the loss with respect to input, representing model 
sensitivity to specific inputs.

Input Loss Curvature
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Figure 1 Overview: Visualization 

of low and high curvature 

samples in ImageNet.

Low Curvature: Easy, prototypical, 

well-represented in the dataset.

High Curvature: Hard, atypical 

images with limited 

representation in the dataset.



Curvature, Test sets, MIA, Zero Order Estimation

Key Insight: Test data has higher 
input loss curvature than training 
data due to unoptimized regions in 
the loss landscape.

Theoretical Framework: We develop 
an upper bound on the KL 
divergence for train-test 
distinguishability in membership 
inference attacks.

Proposed Privacy Test: 

• A new MIA using input loss 
curvature, aiming to surpass 
existing black-box methods. 

• Propose Zero-order estimation to 
estimate curvature in a black-
box setting.

Contributions
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Figure 1: Visualizing low and high input curvature samples from a ResNet50 trained on ImageNet. Low input curvature training 

set images are prototypical and have lots of support in the trainset, while high input curvature train set examples have less 

support and are atypical. Test set examples lie around the training set images in higher curvature regions.



Theorem 4.1 Privacy bounds Train-Test KL Divergence

Theorem 4.2 Dataset Size and Privacy bound Curvature KL Divergence

𝐷𝐾𝐿 𝑝𝑐 𝜙, 𝑆, 𝑧𝑖  ฮ 𝑝𝑐 𝜙, 𝑆∖𝑖 , 𝑧𝑖  ≤
𝐿𝑚 1 −  𝑒−𝜖 +  𝑐 2

2 𝜎2  

𝑐 = 4𝑚 − 1 𝛾 +  2 𝑚 − 1 Δ +
𝜌
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Theorem 4.3 Dataset Size and Curvature MIA Performance

The above two theorems (4.1, 4.2) give the best case performance bound, using the upper bounds we can say 

that the performance of MIA using curvature scores exceeds that of confidence scores with a probability at least 1 

− δ when 
𝑚 >

2𝜎2𝜖 −𝑐

𝐿(1 − 𝑒−𝜖)

Theoretical Bounds for MIA Performance
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Performance bounds using KL divergence



Challenge: Direct calculation of input loss curvature requires model parameters, which are unavailable in 

black-box settings.

Solution: Use Zero-order (zo) estimation to approximate curvature scores without parameter access.

Implementation: To compute zo-curvature scores for MIA, we propose using the finite differences method. 

The Hessian can be estimated using the following formula:

∇2𝑓 𝑧𝑖 = 𝑛2
𝑓 𝑧𝑖 + ℎ 𝑣 + ℎ 𝑢 − 𝑓 𝑧𝑖 − ℎ 𝑣 + ℎ 𝑢 − 𝑓 𝑧𝑖 + ℎ 𝑣 − ℎ 𝑢 + 𝑓 𝑧𝑖 − ℎ 𝑣 − ℎ 𝑢

4 ℎ2 𝑢𝑣⊤

Theory to Practice
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Zero-order estimation



ZO Curvature MIA Results
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ZO MIA

Method
ImageNet

Bal Acc.                     AUROC
CIFAR100

Bal Acc.                     AUROC
CIFAR10

Bal Acc.                     AUROC

Curv ZO NLL (Ours) 69.16 ± 0.08 77.45 ± 0.09 84.47 ± 0.21 93.49 ± 0.18 61.92 ± 0.87 68.82 ± 1.30

Curv ZO LR (Ours) 68.76 ± 0.04 72.28 ± 0.04 80.48 ± 0.10 90.15 ± 0.04 55.00 ± 0.17 58.89 ± 0.38

Carlini et al. (2022) 66.14 ± 0.01 73.46 ± 0.02 81.55 ± 0.13 88.89 ± 0.16 58.23 ± 0.29 61.73 ± 0.32

Yeom et al. (2018) 58.50 ± 0.02 63.23 ± 0.03 76.29 ± 0.39 82.11 ± 0.31 55.57 ± 0.52 60.44 ± 0.75

Sablayrolles et al. 
(2019)

66.93 ± 0.05 76.50 ± 0.04 70.22 ± 0.41 81.11 ± 0.39 56.65 ± 0.56 61.50 ± 0.79

Watson et al. (2021) 61.40 ± 0.06 69.44 ± 0.05 62.71 ± 0.31 71.66 ± 0.50 54.86 ± 0.59 58.58 ± 0.86

Ye et al. (2022) 66.16 ± 0.02 75.79 ± 0.05 80.73 ± 0.24 90.88 ± 0.19 59.62 ± 0.84 67.30 ± 1.25

Song et al. (2021) 57.88 ± 0.03 63.29 ± 0.03 75.58 ± 0.29 82.28 ± 0.27 55.63 ± 0.61 60.42 ± 0.85

Table 1: Comparison of the proposed curvature score based MIA with prior methods tested on 

ImageNet, CIFAR100, and CIFAR10 datasets. Results reported are the mean ± std obtained over 

3 seeds. For CIFAR10 and CIFAR100 64 shadow models were used and 52 for ImagNet.

Figure 2: Comparing our method against existing techniques at 

low FPR. The proposed parametric Curv LR technique has the 

highest TPR at very low FPR.



(a) Validating the effect of Privacy

Validating Theory
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Figure 3: Validating the upper bound from Theorem 4.2 by fitting the 

MIA performance (AUROC of Curv LR) on DP-SGD trained models for 

various privacy parameters ϵ values.

(b) Validating the effect of Dataset Size

Figure 4: Visualizing MIA performance as a function of the size of 

the train set, which is randomly sampled.

Takeaways: We see that the theoretical prediction from Theorem 

4.2 about MIA performance is well matched. Since Theorem 4.2 

provides an upper bound, the results validate the theory.

Takeaways: We validate Theorem 4.3, noting that curvature-based 

MIA methods outperform probability-based ones beyond certain 

dataset sizes: Curv ZO LR excels with subsets of 30-40% of the 

training set, and Curv ZO NLL outperforms prior methods beyond 

10%.



This study explores input loss curvature and its role in improving membership inference attacks (MIA). 
Theoretical analysis and experiments confirm that curvature-based MIA surpasses probability-based 
methods, particularly on large datasets. A novel zero-order estimation method enables efficient black-box 
MIA, achieving state-of-the-art results on CIFAR and ImageNet.

Contributions

• Theoretical Insights: Demonstrates that curvature scores enhance train-test distinguishability, 
improving MIA performance.

• Practical Implementation: Introduced zero-order curvature estimation for black-box settings and new 
MIA methods (Curv ZO NLL/LR).

• Experimental Validation: Validates theoretical predictions and shows superior performance of 
curvature-based MIA across datasets.

Conclusion
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