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Background

> Tool-augmented Large Language Models (LLMs) leverage external tools,
often in the form of APIs, to improve their reasoning capabilities on real-
time knowledge and complex tasks.
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Motivation

» Advanced closed-source LLMs have demonstrated good tool usage capabilities

Ability LLM Call Retrieve+Call Plan+Retrieve+Call Total
Correctness Rouge Correctness Rouge Correctness Rouge Correctness Rouge
Alpaca-7B 24.06% 0.0204 5.19% 0.0019 0.00% 0.086 15.19% 0.0318
ChatGLM-6B 23.62% 0.2451 13.33% 0.2173 0.00% 0.1522 16.42% 0.2191
Zero-shot  GPT-3 Davinci 0.50% 0.1035 1.48% 0.091 0.00% 0.0156 0.57% 0.0814
GPT-3.5-turbo 59.40% 0.4598 38.52% 0.3758 22.00% 0.3809  47.16% 0.4267
GPT-4 63.66% 0.3691 37.04% 0.351 70.00% 0.4808 60.24% 0.3910
Fine-tuning Lynx-7B 49.87% 0.4332 30.37% 0.2503 20.00% 0.3425 39.58% 0.3794

Table 3: Main results of different LLMs on the API-Bank evaluation system.

» Early tool learning research on open-source LLMs has certain limitations

v' Tools are limited or not real-world accessible
v" Focus on scenarios where only one tool is used for one reasoning task
v’ Simple reasoning and planning mechanism limits the tool-use potential of LLMs

v' Some studies do not use real responses from API execution for training

1. Li et al., API-Bank: A Comprehensive Benchmark for Tool-Augmented LLMs, 2023.




Motivation

» Key Reference Work — — ToolBench'!
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e Collect 3,451 real-world tools from Rapid API
Hub, which contain 16,464 APIs

e Generate 126,486 pairs of (instruction, expert
annotated path) samples by using ChatGPT to
create instructions that may call one or several
APIs and annotate reasoning trajectories with
real API calls

e Fine-tune LLaMA to create ToolLLaMA
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APl Name: Search By Title APl Description: Search movies and series by title, ...
Required Parameters: (1) title (string, title to search for), (2) country (string, ...)
Optional Parameters: (1) show_type (string, Type of shows to include in the results,
either “movie”, “series”, or “all”. Default is “all”), (2) output_language (string, ...)
Code Snippets: GET /v2/search/title?title=batman&country=us&show...

Example Response: type:"movie", title:"Batman", overview:"Japanese...

1. Qin et al., Toolllm: Facilitating large language models to master 16000+ real-world apis, 2023.
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» Key Reference Work — — ToolBench'!

1. Qin et al., Toolllm: Facilitating large language models to master 16000+ real-world apis, 2023.

X ____~ Data Construction & Train

=0 ("3 <—(i}

API Instruction &

Collection Generation Annotation S ~,4
? Instructions & relevant APIs 2

& TooIBench

RapidAPI API Retriever TooILI.aMA LLaMA

Collect 3,451 real-world tools from Rapid API
Hub, which contain 16,464 APIs

Generat 126,486 pair - ion, expert

annotated path) samples by using ChatGPT to

create instructions that may call one or several
APIs and annotate reasoning trajectories with
real API calls

Fine-tune LLaMA to create ToolLLaMA

Reasoning Mechanism : Depth-First
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» Key Reference Work — — ToolBench'!
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ToolLLaMA’s performance still has room for improvement

I1-Inst. 11-Tool I1-Cat. 12-Inst. 12-Cat. I3-Inst. Average
e e Pass  Win | Pass Win | Pass Win | Pass Win | Pass Win | Pass  Win | Pass Win
ChatGPT ReACT 415 - | 440 - | 445 - | 425 - | 46.5 - | 220 - | 40.2 -
DFSDT 54.5 605 | 65.0 62.0 | 60.5 57.3 | 750 72.0 | 71.5 64.8 | 620 69.0 | 64.8 64.3
Claude-2 ReACT 55 310| 35 278| 55 338 | 60 350 | 6.0 315|140 475 | 6.8 344
DFESDT 20.5 38.0 | 31.0 44.3 | 185 43.3 | 17.0 36.8 | 20.5 33.5 [ 28.0 65.0 | 22.6 43.5
Text-Davinci-003 ReACT 120 285 |20.0 353|200 310 85 29.8 | 145 298|240 450 |16.5 33.2
DFSDT 435 40.3 | 44.0 438 | 46.0 46.8 | 37.0 40.5 | 420 43.3 | 46.0 63.0 | 43.1 46.3
GPT4 ReACT 53.5 60.0 | 50.0 58.8 | 53.5 63.5 | 67.0 65.8 | 72.0 60.3 | 47.0 78.0 | 57.2 64.4
DFSDT 60.0 67.5 | 715 67.8 | 67.0 665|795 733|775 63.3 | 71.0 84.0 | 711 704
Vicuna ReACT & DFSDT 0.0 0.0 0.0 00| 0.0 00 0.0 00| 0.0 0.0 0.0 00 0.0 0.0
Alpaca ReACT&DFSDT | 0.0 00| 00 00| 00 00| 00 00| 00 00| 00 00| 00 00
ReACT 25.0 45.0 | 29.0 42.0 | 33.0 47.5|30.5 50.8 | 3.5 41.8 | 250 55.0 | 29.0 47.0
ToolLLaMA DFSDT 57.0 55.0 | 61.0 553 | 62.0 54.5 | 77.0 68.5 | 77.0 58.0 | 66.0 69.0 | 66.7 60.0
DFESDT-Retriever | 64.0 62.3 | 64.0 59.0 | 60.5 55.0 | 815 68.5 | 68.5 60.8 | 65.0 73.0 | 67.3 63.1

ToolBench provides large-scale tree-like expert trajectories,
but only the successful paths (positive samples) are used
as training data during supervised fine-tuning
e Low data utilization
e Insufficient exploration of the target space may lead
to suboptimal strategies and limited generalization
performance

e Lack of fine-grained process supervision

1. Qin et al., Toolllm: Facilitating large language models to master 16000+ real-world apis, 2023.



Our Method

> Dataset Construction— —ToolPreference for multi-step reasoning with tools based on ToolBench

e If we use a path-wise way to construct preference
samples following previous researches:
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leading to poor generalization.

> From an engineering perspective, learning preference for
the entire path conflicts with the model’s iterative reasoning

mechanism, making it unsuitable for implementing.



Iterative Reasoning Mechanism: the model decides the
Our MethOd next API call based on the response of last API execution,

rather than pre-planning all API calls at the start.

> Dataset Construction— —ToolPreference for multi-step reasoning with tools based on ToolBench
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> From an engineering perspective, learning preference for
the entire path conflicts with the model’s iterative reasoning

mechanism, making it unsuitable for implementing.



Our Method

> Dataset Construction— —ToolPreference for multi-step reasoning with tools based on ToolBench

e Use a step-wise way to construct preference samples:
backtrack along successful paths to parse branch nodes

l 0 Instruction l Success Path ( Step-wise Preference Data Construction )
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e ( p mwe] (11 muq e Construct 69,393 pairs of preference samples, each
formalized as {Instruction, Input, Output}:

Depth-first Search-based Decision Tree

> Instruction: description of the DFSDT reasoning
rules and available APIs documentation
> Input: user query and historical inference

information before the current step
> Output: a pair of preferred and unpreferred steps




Our Method

> Aligning LLMs with experts’ tool-usage preferences — — Direct Preference Optimization (DPO)
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1. Supervised Fine-Tuning (SFT) is performed on the pre-trained LLM using only positive samples

2. Direct Preference Optimization (DPO) is performed with ToolPreference to obtain our TP-LLaMA
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Our Method

e Evaluation Metrics

v' Pass Rate: represents the proportion that the model successfully gives answers within a
certain number of reasoning actions (set to 200 in our experiment)
v Win Rate: measures the likelihood that the solution path provided by the test model is

preferred over the reference solution path for the same instruction
o Test Setting

v' Evaluate on six test scenarios with different task complexity and generalization difficulty

G1: single-tool Instruction: unseen instructions for seen tools in training

G2: intra-category multi-tools Tool: unseen tools that belong to seen categories in training

G3: inter-category multi-tools Category: unseen tools that belong to unseen categories

11



Experiment Results

» Using LLaMA-2-7B as the Base Model for Training — About Reasoning Performance

v" In terms of pass rate, TP-LLaMA significantly outperforms the baselines, improving by more than
12% on average compared to models without preference learning
v In terms of win rate, TP-LLaMA also shows quite good performance, only slightly lower than

ToolLLaMA in the G1-Category scenario

v TP-LLaMA performs well in more challenging task scenarios. The pass rate increased by more than
26% in the G3-Instruction scenario, proving that preference learning significantly enhances the

model’s ability to handle complex multi-tool tasks.

Pass Rate

Model G1-Ins. G1-Tool G1-Cat. G2-Ins. G2-Cat. G3-Ins. Avg
ChatGPT 0.52 0.55 0.60 0.51 0.51 0.21 0.48
Davinci 0.49 0.47 0.45 0.40 0.27 0.29 0.40
ToolLLaMA 0.54 0.60 0.62 0.47 0.54 0.17 0.49
LLaMA with SFT 0.47 0.53 0.72 048 0.63 0.35 0.53
TP-LLaMA (ours) 0.55 0.65 0.80 0.62 0.67 0.61 0.65
Win Rate

Model Gl1-Ins. G1-Tool Gl-Cat.  G2-Cat. G2-Ins. G3-Ins. Avg
ChatGPT - = = . - . =

Davinci 0.37 0.37 0.35 0.35 0.29 0.54 0.38
ToolLLaMA 0.55 0.53 0.57 0.56 0.52 0.68 0.57
LLaMA with SFT 0.54 0.51 0.56 0.65 0.57 0.81 0.61
TP-LLaMA (ours) 0.56 0.59 0.54 0.70 0.64 0.86 0.65

12



Experiment Results

» Using LLaMA-2-7B as the Base Model for Training — About Reasoning Efficiency

v" LLaMA with SFT requires an average of 32.06 reasoning steps, while TP-LLaMA needs only
22.62 steps, improving efficiency by 29.44%

v' TP-LLaMA's reasoning efficiency is significantly better than the model trained only with
successful trajectories -- through preference learning, the model is more likely to make the best
decision first at each step of reasoning, thus avoiding exploring unnecessary suboptimal
branches in the decision tree.

Table 2: Efficiency Results of TP-LLaMA. Imp denotes the improvement of TP-LLaMA over
LLaMA with SFT in terms of the average steps.

Model G1-Ins. G1-Tool G1-Cat. G2-Ins. G2-Cat. G3-Ins. Avg Imp

LLaMA with SFT 32.82 34.60 31.45 31.98 35.05 2644  32.06 -
TP-LLaMA (ours) 24.54 24.19 23.85 23.98 23.53 15.61  22.62 29.44%

13



Experiment Results

» Ablation Experiment: Using Mistral-7B, Qwenl1.5-7B, Gemma-7B as Base Models

Table 3: Ablation Performance Experiment Results. Avg represents the average pass rate or win  Table 4: Ablation Efficiency Experiment Results. Imp denotes the improvement of TP-LLaMA over
rate of the 6 test scenarios. A win rate higher than 50% means the model performs better than LLaMA with SFT in terms of the average steps.

ChatGPT+DFSDT.
Average Number of Steps in One Successful Path
Pass Rate Model
Gl-Ins. G1-Tool GI1-Cat. G2-Ims. G2-Cat. G3-Ins. Avg Imp
Model Gl-Ins. GI1-Tool G1-Cat. G2-Ins. G2-Cat. G3-Ins. Avg
Mistral with SFT 28.92 2665 3022 2569 2658 2524 27.22 -
Mistral with SFT 0.70 0.43 0.42 0.53 0.46 0.27 0.47 TP-LLaMA (Mistral) 2530  25.01 2336 2351 2074 1642 2239 17.74%
TP-LLaMA (Mistral) 0.71 0.53 0.55 0.70 0.64 057  0.62 -
Qwen with SFT 3574 3466 3685 3274 3618 3793 3568 -
Qwen with SFT 0.69 0.51 0.51 0.66 0.55 0.49 0.57 TP-LLaMA (Qwen) 2512 2383 2449 2384 2692 2218 2440 31.61%
TP-LLaMA 77 5 . .72 .61 .65 .65
{Qwen) : 953 0.60 0 0.6 06 i Gemma with SFT 2749 2277 2410 1870 2052 2119 2246 -
Gemma with SFT 0.67 0.44 0.49 0.47 0.44 0.29 0.47 TP-LLaMA (Gemma) 17.15  13.88 1591  13.63 1330 1594 1497 33.35%
TP-LLaMA (Gemma)  0.80 0.48 0.61 0.70 0.65 0.68  0.65
Win Rate P l o o th
Model Gl-Ins. GI1-Tool GI1-Cat. G2-Cat. G2-Ins. G3-Ins. Avg reference earnlng lmproves e
Mistral with SFT 0.52 0.47 0.55 0.61 0.61 0.72 0.58
TPLLiMAMism) 053 050 057 062 o6 074  0g performance of all the models.
Qwen with SFT 0.53 0.52 0.52 0.64 0.66 0.75 0.60 . .
TPLLMAQuen) 054 0S4 058 066 067 081 06 The effectiveness of our framework is
Gemma with SFT 0.58 0.54 0.53 0.50 0.62 0.73 0.58
TP-LLaMA (Gemma)  0.61 0.57 0.58 0.65 0.67 075 0.64 1ndependent of the model 1tself!
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Abstract

Tool-augmented large language models (LLMs) leverage tools, often in the form
of APIs, to improve their reasoning capabilities on complex tasks. This enables
them to act as intelligent agents interacting with the real world. The recently
introduced ToolLLaMA model by Qin et al. [2023] utilizes the depth-first search-
based decision tree (DFSDT) mechanism for multi-step reasoning with 16000+
real-world APIs, effectively enhancing the performance of tool-augmented LLMs
compared to traditional chain reasoning mechanisms. However, their approach
only employs successful paths from decision trees (also called inference trees) for
supervised fine-tuning (SFT), missing out on the potential learning opportunities
from failed paths. Inspired by this, we propose an inference trajectory optimiza-
tion framework based on preference learning to address this limitation. We first
introduce a novel method for constructing preference data from tree-like expert
trajectories, which leverages the previously ignored failed explorations in the de-
cision trees. Specifically, we generate a step-wise preference dataset, ToolPref-
erence, from the ToolBench dataset for tool learning. In the subsequent training
phase, we first fine-tune the LLM wuh quu:\siul tool- uxagc expert trajectories
and then apply direct preference i (DPO) with IPreference to up-
date the LLM’s policy, resulting in our ToolPrefer-LLaMA (TP LLaMA) model.
This approach not only enhances the utilization of original expert data but also
broadens the learning space of the model. Our experiments demonstrate that by
obtaining insights from errors in inference trees, TP-LLaMA significantly outper-
forms the baselines across almost all test scenarios by a large margin and exhibits
better generalization capabilities with unseen APIs. At the same time, TP-LLaMA
has also demonstrated superior reasoning efficiency compared to the baselines,
making it more suitable for complex tool-usage reasoning tasks.

1 Introduction

In recent years, large language models (LLMs) have exhibited impressive capabilities in various ar-
cas, including language and lti-modal content learning and reasoning,
and even embodied intelligence task processing [Brown etal.. 2020. Zeng et al.. 2023. Alavrac et al..
2022, Lietal., 2023, Lu et al., 2024, Cao et al., 2024a,b, Mazzaglia et al., 2024]. Despite these no-
table strengths, these models still face significant challenges, such as a lack of access to real-time
information [Komeili et al., 2021] and difficulties in precise mathematical tasks [Patel et al., 2021,
Luet al., 2023b]. The development of tool-augmented LLMs tackles these challenges by enabling
LLMs to interact with external tools (often in the form of APIs), significantly enhancing their ca-
pabilities. This advancement allows LLMs to serve as efficient intermediaries between users and
a large of Notably, tool LLMs based on the ChatGPT [Brown
et all, 2020] and GPT-4 [Achiam et al., 2023] have achieved outstanding results by using few-shot
or zero-shot prompts to activate the LLM’s inherent tool-usage abilities [Deng et al , 2023, Lin et al.,
2024, Lu et al., 2023a]. Despite this progress, some studies demonstrate that open-source LLMs
still exhibit a significant gap in their capacity to utilize external tools compared to state-of-the-art
(SOTA) closed-source models like GPT-4 [Liu et al., 2024, Wang et al., 2024b]. To bridge this gap,
aligning these op LLMs with tool-us tasks is essential.

Currently, most efforts to align op LLMs with tool tasks rely on su-
pervised fine-tuning (SFT) with expert trajectory datasets, whuh trains LLM~ to learn strategies
for subsequent actions based on previous actions and observations [Patil et al., 2023, Schick et al.,

2023]. Early studies in this field typically have limitations such as a restricted variety of APIs, the
reliance on single-tool scenarios, and the use of simple reasoning methods [Wei et al., 2022, Yao
etal., 2023, Patil et al., 2023]. The recent work by Qin et al. [2023], which focuses on the scene
of LLM’s multi-step reasoning with external tools, solves the above limitations. They introduce
an instruction tuning dataset called ToolBench, which includes over 16,000 real-world APIs and
vm-iom realistic instructions, along with expert trajectories annotated by ChatGPT based on a depth-
ased decision tree (DFSDT) reasoning mechanism. They then perform SFT training on

Our experiments are conducted on the test tasks from ToolBench. To evaluate the performance, we
adopt two metrics: the pass rate, which measures the probability of the model successfully providing
an answer within limited steps; and the win rate, which quantifies the likelihood that the evaluator
will prefer the model’s responses. From the experiment results, we have the following findings:

* Across all test scenarios, TP-LLaMA consistently surpasses ToolLLaMA and other base-
lines, with an average pass rate improvement of at least 12% and a win rate that outperforms
nearly all other models by an average of 4%. These results demonstrate that learning from
failed attempts can si enhance the d ability of LLMs. Addition-
ally, our model shows superior generalization to unseen APIs.

« Efficiency experiments show that our model requires an average of only 22.62 steps for
DFSDT inference, compared to 32.06 steps for the SFT model. This enhancement stems
from our method’s ability to avoid unnecessary branch explorations in DFSDT reasoning.

* Our ablation experiments verify that the effectiveness of our preference dataset and infer-
ence trajectory optimization framework has nothing to do with the base model itself. Better
results can still be obtained after replacing the base model with Mistral-7B [Jiang et al.,
2023], Qwen1.5-7B [Bai et al., 2023]. and Gemma-7B [Team et al., 2024].

In summary, this work aims to enhance the performance of LLMs on multi-step reasoning with
external tools by integrating insights from errors in tree-like reasoning trajectories and employing
step-wise preference pairs for preference learning. Our key contributions include: (i) The careful
design and ion of a new tool-us dataset — ToolP ., providing a valu-
able resource for the community; (ii) The proposal of using ToolPreference to optimize the LLM'’s
tool-usage ability with the DPO training, along with the development of the TP-LLaMA model;
(iii) Extensive experimental evaluations and in-depth analyses of the TP-LLaMA model, providing
evidence of its effectiveness and validating its performance across various dimensions.

arci
LLaMA with this dataset to create the ToolLLaMA model, which shows remarkable per .
However, ToolLLaMA's training is still based on expert behavior cloning, potentially limiting explo-
ration of the target space and leading to suboptimal strategies. Additionally, although their expert
trajectories are structured as DFS trees, only successful trajectories are utilized in the SFT training,
which neglects valuable insights from failed attempts and results in low data utilization.

As the saying goes, “a fall into a pit, a gain in your wit”, effective human learning involves not
only drawing lessons from success but also from failures. Inspired by this, we propose a new in-

ference trajectory framework for d LLMs as in
Figure [, which enhances the tool leaning process by mcorpomlmg previously ignored failure ex-
ploration i 2 via ce learning. , using the tree-like expert trajectories

from ToolBench [Qin et al), 2023], we first parse each pair of branch nodes along the successful
trajectory in the decision tree into a preference sample pair, thereby constructing a novel step-wise
tool-usage preference dataset named ToolPreference. Subsequently, after conducting SFT training

ToolPreference (Ours)
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on the pre-trained LLM with successful trajectories, we employ the direct
(DPO) method [Rafailov et al., 2023] with the ToolPreference dataset to further align the LLM with
tool-usage downstream tasks, and thus obtain our model. named ToolPrefer-LLaMA (TP-LLaMA).
Our strategy improves the utilization of expert data and simultaneously broadens the learning space.

Figure 1: Our Inference Trajectory Optimization Framework.
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