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main lemma: PAC Bayes
simplified PAC-Bayes [Neyshabur et. al. 2017]

let £ 271R" be any model with parameters w and let P be a distribution over
parameters, independent of the %.

then for any y, 6 > 0 with probability at least 1 - § over i.i.d. training set .# of size m
drawn according to ¥, for any w and any random perturbation u ~ Q(w)
such that P(sup,_ [fix; w) - flx; w + u)|, < Yay) > 2 w.rt Q we have

generalization gap? = O{ D, (Qw) || P); 1/m; log (6m/6) }



main lemma

let : 271RF be any model with parameters w = vec{W,, ..., W }; and
T >0, Spp oS> 0 which may depend on w and parameter-independent

C,>0,C,>0,0<7,, ...,n <1st

we can upper bound sup_ | fix; w) |, with C,, T

- foru =vec{U,, ..., U }with [| U ||, <75, S, we can upper bound
sup, | flx; w) - fle; w +u) [,with C,, T, S, || U ||,
- Tand S, are connected: we can upper bound the sum of S, with T
n,and C,, C, are connected: we can upper bound the min of . with C., C,

then for any y, 6 > 0 with probability at least 1 - § over i.i.d. training set S of size m
drawn according to & we provide generalization gap depending on y, 6, n, m, C,,
C,, T, S, |w|,, min of 5.



applying main lemma to MLPs, GNNs and PerslLay

defining:
- T, S,, ..., S as spectral norms of weight matrices
- C,, Cyny, ..., p according to perturbation analysis [neyshabur et al. 2017 Liao et. al. 2020]

we can apply main lemma to MLPs and GNNs

for PersLay [caricre et a1 2020] We provide:
perturbation analysis
main lemma variables definition



compositional lemmas

lemma (iwo models in parallel) corollary (GNNs with persistence)
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Generalization

experiments
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conclusion

- main lemma: general PAC-Bayes lemma
- can be applied to well-studied models
- can be applied to persistence homology
- can be applied to compositions

- empirical evaluation shows strong correlation

Thank you for attention!



