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Topological data analysis and Čech persistence diagrams

Topological data analysis studies the shape of data, i.e. its
geometric or topological structure.

The Čech persistence diagrams dgmi(S) of a set S capture
some aspects of its topology.

Persistence diagrams can be vectorized and used as inputs to
various machine learning methods for classification or
regression.
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Finite samplings of shapes

Common task in TDA: recover information
regarding the shape of some set S using a finite
sampling A ⊂ S.

Idea: use the persistence diagrams dgmi(A) as
estimates of dgmi(S).

Problem: dgmi(A) is only known to converge
weakly to dgmi(S) as A → S. In particular, machine
learning-friendly features might not converge.
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Our results: stronger convergence

In our article, we show that if

• S is a generic submanifold, and

• An ⊂ S is a random finite sampling of cardinality n,

then dgmi(An)
n→∞−−−→ dgmi(S) for the stronger Wasserstein

metric.

This guarantees the stability of many machine learning
features.
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Further details for the specialists

More specifically, we show:

• A stronger version of the bottleneck theorem,

• Finiteness in expectation of the number of points in some
regions of the diagram,

• Asymptotic expression for the total persistence of
dgmi(An),

• Convergence of dgmi(An) to dgmi(S) for the Wasserstein
distances.
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