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Background and Motivation

- RLHF

Step 1

Collect demonstration data,
and train a supervised policy.

Step 2

Collect comparison data,
and train a reward model.

Step 3

Optimize a policy against
the reward model using
reinforcement learning.
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Background and Motivation

-1 RLHF - why we need RL
» We use RL training because supervised training teaches the model to lie

1) If the model “*knows” the answer, the supervised training
associates the answer with the gquestion.

2) If the model does not know the answer, the supervised training
pushes the model to associate the answer with the question
anyhow.

-l The limitations of RL
» Instability

»Ou%?t‘. z;k.{'{;arl\n}r‘uﬁllf\ggpﬁ%enmgiie}s\ FQ éq_llow instructions with human feedback. NeurlPS 2022.



Background and Motivation

-1 RLHF is a complex and often unstable procedure
» Eliminating the need for fitting a reward model

Reinforcement Learning from Human Feedback (RLHF) Dlrect Preference Optimization (DPO)
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Background and Motivation

-1 RLHF is a complex and often unstable procedure

» Eliminating the need for fitting a reward model

Reinforcement Learning from Human Feedback (RLHF)
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Direct preference optimization: Your language model is secretly a reward model
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Advances In Neural Information Processing Systems, 2024 - proceedings.neurips.cc

Abstract

While large-scale unsupervised language models (LMs) learn broad world knowledge and
some reasoning skills, achieving precise control of their behavior is difficult due to the
completely unsupervised nature of their training. Existing methods for gaining such
steerability collect human labels of the relative quality of model generations and fine-tune
the unsupervised LM to align with these preferences, often with reinforcement learning
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Background and Motivation

 The Impact of Pairwise Data Quality on B Selection

Dataset: Anthropic HH

v low gap denotes cases where the chosen and rejected examples are
closely similar, typically indicating high-quality, informative pairs.

v High gap signifies pairs with larger differences, implying lower-quality

. e e e e e e e e e e e

data.

[

Ax? Human: How can I store food if I don't have a pantry?

B - . e e e e e e e e e e e e e e e e e e e e e

Assistant: You could store the food in a refrigerator, the top cupboards in your
kitchen, the freezer, or even in a hole in the ground.

DRSS TANI: By storing food in your Assistant: You could store things ina
refrigerator or freezer. You have . ;
container, like a wooden box or a

access to a large volume of your
. 9 Y bucket.
home's space in these places.

Low Gap High Gap
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Background and Motivation @)

 The Impact of Pairwise Data Quality on B Selection

Dataset: Anthropic HH

v low gap denotes cases where the chosen and rejected examples are
closely similar, typically indicating high-quality, informative pairs.

v High gap signifies pairs with larger differences, implying lower-quality

data.

Models: Pythia-410M, -1.4B, and -2.8B

Metrics: win rate



Background and Motivation

 The Impact of Pairwise Data Quality on B Selection

» The optimal value of B varies with data quality, reflecting divergent

performance patterns across datasets.

» The dataset exhibits notable outliers.

Win Rate (%)
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Figure 2: Win rate performance of DPO across different 3 settings on the low gap, mixed gap, and
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Background and Motivation

 The Impact of Pairwise Data Quality on B Selection

» The optimal value of B varies with data quality, reflecting divergent
performance patterns across datasets.

» The dataset exhibits notable outliers.

Principle 1: The optimal B value should be responsive to pairwise data’s

quality.
Principle 2: The selection of 8 value should minimize the influence of outliers
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- Method: g-DPO

J Dynamic B Calibration at Batch-Level
> Define the reward discrepancy M = B, log ( ™o (4w | 2) ) — Bolog ( mo(y: | z) ) .

Wref(yw | .’L‘) ﬂ-ref(yl | CC)

» Instance-level dynamic B adaptation

Bi = Po + a(M; — My)Bo = [1 + a(M; — My)]Bo,

B, is the DPO benchmark hyperparameter
(typically 0.1),
M, is a threshold.

a € [0,1] scales M;’s influence on g;.
When a = 0, 8; = B, (standard DPO)

11



Method: g-DPO ©

J Dynamic B Calibration at Batch-Level

» Define the reward discrepancy M = ;log (:9((?;’” ||z))) — BBy log (:B((yy’ lﬁ))) ;
ref\ Yw ref\ Y1

» Instance-level dynamic B adaptation
Bi = Bo + a(M; — My)Bo = |1 + a(M; — My)|Bo,

» Batch-level dynamic estimation methodology
Bratch = [1 + 0(Ejbatch [ M;] — Mo)]Bo.

» Estimate M, with moving average updating scheme.
My < mMy + (1 — m)Eiwbatch[Mz']a

12



Method: g-DPO

1 B-Guided Data Filtering

» Define the importance of each triplet (x, y,, v;)

p(M;) = —— exp (— M= M0)2) ,

- V2mo 202

M, and o represent the mean and standard deviation of
M; across the training dataset.

» Dynamically estimate the value ofousing the moving average method:

O < Mo + (1 — m) \/Viwbatch[Mi]-

13



Method: g-DPO

1 B-Guided Data Filtering

» Define the importance of each triplet (x, y,,,y;)

1 (M; — Mp)?
p(M;) = 5o €xXp ( 252 ) ;

M, and o represent the mean and standard deviation of
M; across the training dataset.

» Dynamically estimate the value ofcusing the moving average method:

g < mo + \/Vzrvbatch[Mz]

Note: It is important to highlight that this work does not propose a novel

filtering method, but we find that filtering enhances stability.

14



Method: g-DPO ©

1 Highlights of g-DPO

>

Simplicity: Easy to implement with dynamic B adjustment and data
filtering

Efficiency: No additional gold model needed; insensitive to
hyperparameters

Model-agnostic: Plug-and-play module compatible with future DPO

enhancements.

15



Experiment

] Dialogue Generation and Summarization

Win Rate Across different Sampling Temperature

&nthropic-HH Dialogue Win Rate vs Chosen TL;DR Summarization Win Rate vs Chosen
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Figure 4: Left. The win rates computed by GPT-4 evaluations for the Anthropic-HH one-step
dialogue; 3-DPO consistently outperforms across all sampling temperatures. Right. In the com-
parison of TL;DR summarization win rates versus chosen summaries with GPT-4 as the evaluator,
3-DPO is distinguished as the only strategy achieving a win rate over 50% across different sampling

temperatures.
16



Experiment

] Dialogue Generation and Summarization

Win Rate Across different Model Sizes

Table 1: Win rate comparison of Pythia-410M, -1.4B, and -2.8B models on the Anthropic HH dataset,

evaluated using GPT-4.
Method | 410M | 1.4B | 2.8B
DPO 26.19 42.78 51.51

DPO + Dynamic /3 97.15+3:67% | 43.51+1.71% | 55.19+7. 14‘%
DPO + Data Filtering | 29.03110-84% | 46.99+9-84% | 53 49+3.71%
p-DPO 30.18*15-23% | 48,67+13.77% | gy (7+10.79%

17



Experiment

1 Adaptations of g-DPO

v Selective filtering of the top 20% of samples markedly enhances model
performance.
v" Dynamic B adapts to and improves upon existing filtering strategies.

v" Dynamic B Enhancement across DPO Variants.

Dynamic 8 with DPO variants
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Figure 5: Left: Win rates from GPT-4 evaluations on Anthropic-HH single-turn dialogues, showcasing

3-DPO’s adaptability to diverse filtering strategies. Middle: Win rates of 3-DPO across various DPO

variants as evaluated by GPT-4. Right: Distribution of individual reward discrepancies following 18
fine-tuning through batch-level and instance-level calibration.



Experiment

1 Necessity of Batch-Level Dynamic B Calibration

v" Batch-level calibration surpasses both instance-level and population-level

approaches.

v" Instance-level calibration magnifies the impact of outliers.

Table 2: Comparison of win rates across varying mixture ratios on the Anthropic HH dataset, with

each ratio indicating the proportion of high-gap to low-gap datasets, e.g., a 40% mixture ratio reflects
a blend of 40% high-gap and 60% low-gap.

Mixture Ratio 10% 20% 30% 40 %

Vanilla DPO 50.17 50.56 47.95 | 29.15 |
+ Instance-level calibration | 49.18 97 | 49.827146% | 44427567 | 16,82 42907
+ Batch-level calibration 57 68+14.69% | 5g 15+11.06% | 51 95+6.88% | 34 99+19.79%

19



Experiment

] Necessity of Batch-Level Dynamic g Calibration

v" Batch-level calibration surpasses both instance-level and population-level approaches
v" Instance-level calibration magnifies the impact of outliers.

v Our B-calibration strategy consistently outperforms baseline methods.

Table 5: Comparison of different methods on Llama3-Instruct (8B) with explicit reward model

Method Llama3-Instruct (8B) Llama3-Instruct (8B)
LC (%) WR (%)
DPO (Implicit RM) 40.44 37.38
B-DPO (Implicit RM) 43.38 38.21
SimPO (Implicit RM) 44 .38 38.97
3-SimPO (Implicit RM) 46.03 40.18
SimPO (PairRM) 44.70 38.98
B-SimPO (PairRM, Instance-Level) 43.84 38.54
B-SimPO (PairRM, Batch-Level) 45.65 39.76
SimPO (ArmoRM) 53.70 47.50
B-SimPO (ArmoRM, Instance-Level) 49.05 45.47

B-SimPO (ArmoRM, Batch-Level) 54.86 49.66 20




Conclusion ':..,l

- Introduction of B-DPO:

e Dynamically adjusts B parameter based on pairwise data informativeness
-1 Key Components:

e B-guided data filtering

e Batch-level dynamic B calibration

-1 Results and Implications:

 Significant performance improvements across various models and

datasets
o Offers an adaptable training paradigm for Large Language Models (LLMs)

with human feedback



Limitations and Future Work

.;|

Nz

1 Adaptive B in Self-Play
e Explore dynamic B adjustments in self-play scenarios

e Aim to evolve superior model strategies

-l Automated Parameter Tuning

e Pursue automation in B tuning

22



Dr. DPO

©

1 An enhancement to DPO that addresses label flipping noise in

training datasets with distributionally robust optimization.
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Figure 1: Left: An example illustrating pointwise and pairwise noise. Right: Comparison of gradients
between DPO and Dr. DPO under varying levels of pairwise noise.

Wu, et. al. Towards Robust Alighment of Language Models: Distributionally Robustifying Direct Preference Optimization.

under review.



a-DPO

-l Addressing limitations in previous methods like DPO and SimPO

by balancing alignhment and diversity through KL divergence.
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