

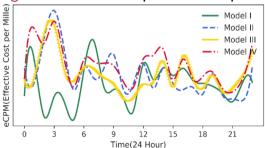
Contextual Active Model Selection

Xuefeng Liu¹ Fangfang Xia² Rick L. Stevens^{1,2} Yuxin Chen¹

¹University of Chicago ²Argonne National Laboratory

Motivation

- As pre-trained models become increasingly prevalent in a variety of real-world machine learning applications, there is a growing demand for label-efficient approaches for model selection
- No single pre-trained model achieves the best performance for every context
- Model performance depends on the context
- Cost-sensitive to evaluate and access the models / labels
- Online streaming data instead of a pool of data points



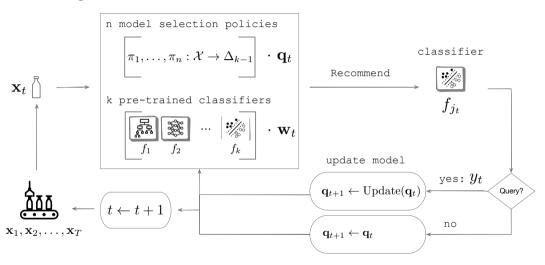
Research question

- How to select data-adaptive models when facing heterogeneous data stream?
- How to make it labeling efficient?

- We want a robust cost-effective online-learning algorithms that
 - effectively identify best model selection policy
 - works under limited labeling resources
 - adaptive to arbitrary data streams

We formally define it as the Contextual Active Model Selection (CAMS) problem and propose a novel algorithm, also named CAMS, to effectively address it.

Learning Protocol



Learning Protocol

Algorithm Contextual Active Model Selection Protocol

- 1: Given a set of classifiers $\mathcal F$ and model selection policies Π
- 2: for t = 1, 2, ..., T do
- 3: The learner receives a data instance $\mathbf{x}_t \in \mathcal{X}$ as the context for the current round
- 4: Compute the predicted label $\hat{y}_{t,j} = f_j(\mathbf{x}_t)$ for pre-trained classifier indexed by $j \in [k]$
- 5: The learner identifies a model/classifier f_{j_t} and makes a prediction \hat{y}_{t,j_t} for the instance \mathbf{x}_t based on previous observations.
- 6: **if** The learner decide to guery **then**
- 7: The learner incurs a query cost
- 8: The learner observes true label y_t and receives a (full) 0-1 loss vector $\ell_t = \mathbb{I}_{\{\hat{\pmb{y}}_t \neq y_t\}}$
 - The learner can then use the queried labels to adjust its model selection criterion for future rounds.

Method Overview

```
1: Input: Models \mathcal{F}, policies \Pi, #rounds T, budget b
 2: Initialize loss \tilde{L}_0 \leftarrow 0: query cost C_0 \leftarrow 0
                                                                                                                           21: procedure SETRATE(t, x_t, m)
  3: Set \Pi^* \leftarrow \Pi \cup \{\pi_1^{\text{const}}, \dots, \pi_k^{\text{const}}\}
                                                                                                                                         if STOCHASTIC then
 4: for t = 1, 2, ..., T do
                                                                                                                                               \eta_t = \sqrt{\frac{\ln m}{t}}
 5:
             Receive x_t
                                                                                                                                        end if
             \eta_t \leftarrow \text{SETRATE}(t, \mathbf{x}_t, |\Pi^*|)
                                                                                                     Contextual
                                                                                                                           25:
                                                                                                                                         if ADVERSARIAL then
            Set q_{t,i} \propto \exp\left(-\eta_t \tilde{L}_{t-1,i}\right) \, \forall i \in |\Pi^*|
                                                                                                    Model
                                                                                                                                               Set \rho_t as in adversarial setting section
                                                                                                      Selection
            i_t \leftarrow \text{RECOMMEND}(\boldsymbol{x}_t, \boldsymbol{q}_t)
                                                                                                                                              \eta_t = \sqrt{\frac{1}{\sqrt{t}} + \frac{\rho_t}{c^2 \ln c}} \cdot \sqrt{\frac{\ln m}{T}}
             Output \hat{y}_{t,j_t} \sim f_{t,j_t} as the prediction for x_t
                                                                                                                                        end if
10.
             Compute z_t = \max\{\delta_0^t, \mathfrak{E}(\hat{\mathbf{y}}_t, \mathbf{w}_t)\}
                                                                                                                                         return n
                                                                                                      Active
11:
             Sample U_t \sim \text{Ber}(z_t)
                                                                                                                            30: end procedure
12:
             if U_t = 1 and C_t < b then
                                                                                                      Queries
13:
                   Ouerv the label y_t
                  C_t \leftarrow C_{t-1} + 1
14.
                                                                                                                           29: procedure RECOMMEND(x_t, a_t)
                  Compute \ell_t: \ell_{t,j} = \mathbb{I}\left\{\hat{y}_{t,j} \neq y_t\right\}, \forall j \in [|\mathcal{F}|]
15:
                                                                                                                                         if STOCHASTIC then
                  Estimate model loss: \hat{\ell}_{t,j} = \frac{\ell_{t,j}}{2}, \forall j \in [|\mathcal{F}|]
                                                                                                                                               \mathbf{w}_t = \sum_{i \in |\Pi^*|} q_{t,i} \pi_i(\mathbf{x}_t)
16:
                                                                                                                                              i_t \leftarrow \text{maxind}(w_t)
                   Update \tilde{\boldsymbol{\ell}}_t: \tilde{\ell}_{t,i} \leftarrow \langle \pi_i(\boldsymbol{x}_t), \hat{\ell}_{t,i} \rangle, \forall i \in [|\Pi^*|]
                                                                                                      Model
                                                                                                                                        end if
                                                                                                     Updates
                  \tilde{\boldsymbol{L}}_t = \tilde{\boldsymbol{L}}_{t-1} + \tilde{\boldsymbol{\ell}}_t
18:
                                                                                                                                         if ADVERSARIAL then
19.
                                                                                                                                              i_t \sim a_t
                   \tilde{L}_t = \tilde{L}_{t-1}
20:
                                                                                                                                              j_t \sim \pi_{i_t}(x_t)
21:
                  C_t \leftarrow C_{t-1}
                                                                                                                                         end if
             end if
                                                                                                                                         return jt
23. end for
                                                                                                                            39: end procedure
```

We denote by $\bar{\ell}_t^y := \langle \mathbf{w}_t, \mathbb{I}\left\{\hat{\mathbf{y}}_t \neq y\right\} \rangle$ as the expected loss if the true label is y, where $\mathbf{w}_t = \pi_{\mathsf{maxind}(\mathbf{q}_t)}(\mathbf{x}_t)$ and $\mathsf{maxind}(\mathbf{w}) := \arg\max_{j:w_j \in \mathbf{w}} w_j$.

Comparison against Related Work

Algorithm	Online bagging	Hedge	EXP3	EXP4	Query by Committee	ModelPicker	CAMS
Setup	bagging	online learning	bandit	contextual bandits	active learning	model selection	(ours)
model selection	×	✓	✓	✓	×	✓	\checkmark
full-information	✓	✓	×	×	✓	✓	\checkmark
active queries	×	×	×	×	✓	✓	\checkmark
context-aware	×	×	×	✓	×	×	√

Theoretical Guarantees

Pseudo-regret for stochastic setting

$$\overline{\mathcal{R}}_{T}\left(\mathcal{A}\right) = \mathbb{E}[L_{T}^{\mathcal{A}}] - T \min_{i \in [|\Pi^{*}|]} \mu_{i},\tag{1}$$

where μ_i represents the expected loss of policy i if recommending the most probable model $\frac{1}{T}\sum_{t=1}^T \mathbb{E}_{\mathbf{x}_t,y_t} \left[\ell_{t,\mathsf{maxind}(\pi_i(\mathbf{x}_t))}\right]$.

Expected regret for adversarial setting

$$\mathcal{R}_{T}\left(\mathcal{A}\right) = \mathbb{E}[L_{T}^{\mathcal{A}}] - \min_{i \in [|\Pi^{*}|]} \sum_{t=1}^{I} \tilde{\ell}_{t,i}, \tag{2}$$

where $\ell_{t,i}$ represents the expected loss of policy i if randomizing the model recommendation at t, $\ell_{t,i} := \langle \pi_i(\mathbf{x}_t), \boldsymbol{\ell}_t \rangle$

Theoretical Guarantees

- Query complexity and tight regret bound under
 - Stochastic data streams
 - Adversarial data streams
 - Finite policy / model classes

Algorithm	Regret	Query Complexity
Exp3	$2\sqrt{Tk\log k}$	-
Exp4	$\sqrt{2Tk}\log G$	-
Model Picker _{stochastic}	$62 \max_{i} \Delta_{i} k / (\lambda^{2} \log k)$ $\lambda = \min_{j \in [k] \setminus \{i^{*}\}} \Delta_{j}^{2} / \theta_{j}$	$\sqrt{2T\log k}(1+4\tfrac{c}{\Delta})$
Model Picker _{adversarial}	$2\sqrt{2T\log k}$	$5\sqrt{T\log k} + 2L_{T,*}$
CAMS _{stochastic}	$\left(\frac{\ln\frac{ \Pi^* -1}{\gamma}+\sqrt{\ln \Pi^* \cdot 2b^2\ln\frac{2}{\delta}}}{\sqrt{\ln \Pi^* \Delta}}\right)^2$	$\left(\left(\frac{\ln\frac{ \Pi^* -1}{\gamma} + \sqrt{\ln \Pi^* \cdot 2b^2\ln\frac{2}{\delta}}}{\sqrt{\ln \Pi^* \Delta}}\right)^2 + T\mu_{i^*}\right) \frac{\ln T}{c\ln c}$
CAMS _{adversarial}	$2c\sqrt{\ln c/\max\{\rho_T,\sqrt{1/T}\}}\cdot\sqrt{T\log \Pi^* }$	$O\left(\left(\sqrt{\frac{T\log \Pi^* }{\max\{\rho_{T},\sqrt{1/T\}}}} + \tilde{L}_{T,*}\right)(\ln T)\right)$

Experiments

dataset	classification	total instances	test set	stream size	classifier	policy
CIFAR10	10	60000	10000	10000	80	85
DRIFT	6	13910	3060	3000	10	11
VERTEBRAL	3	310	127	80	6	17
HIV	2	40000	4113	4000	4	20
CovType	55	580000	100000	100000	6	17

Baselines

context-free: Random Sampling (RS, query the instance label with fixed probability), Query by Committee (QBC, committee-based sampling), Importance Weighted Active Learning (IWAL, Calculate query probability based on labeling disagreements of surviving classifiers), Model Picker (MP, employ variance based active sampling)

contextual: Contextual-QBC (CQBC), Contextual-IWAL (CIWAL), Oracle

Experiments

