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Motivation

As pre-trained models become increasingly prevalent in a variety of
real-world machine learning applications, there is a growing demand for
label-efficient approaches for model selection

No single pre-trained model achieves the best performance for every
context

Model performance depends on the context

Cost-sensitive to evaluate and access the models / labels

Online streaming data instead of a pool of data points
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Research question

* How to select data-adaptive models when facing heterogeneous data

stream?
¢ How to make it labeling efficient?

¢ We want a robust cost-effective online-learning algorithms that
o effectively identify best model selection policy

e works under limited labeling resources
® adaptive to arbitrary data streams

We formally define it as the Contextual Active Model Selection (CAMS)
problem and propose a novel algorithm, also named CAMS, to effectively
address it.



Learning Protocol
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Learning Protocol

Algorithm Contextual Active Model Selection Protocol

1:
2:
3:

Given a set of classifiers 7 and model selection policies II
fort=1,2,...,7T do
The learner receives a data instance x, € X as the context for the
current round
Compute the predicted label g, ; = f; (x;) for pre-trained classifier
indexed by j € [k]
The learner identifies a model/classifier f;, and makes a prediction g, ;,
for the instance x; based on previous observations.
if The learner decide to query then
The learner incurs a query cost
The learner observes true label y; and receives a (full) 0-1 loss vec-
toréy = Iy, 4
The learner can then use the queried labels to adjust its model
selection criterion for future rounds.




Method Overview

1: Input: Model§ F, policies II, #rounds T', budget b

2: Initialize loss L < 0; query cost Cjy < 0 21: procedure SETRATE(t, x;, m)
3: Set IT* «— TTU {m§o™, ... fom} 22: if STOCHASTIC then

4: fort=1,2,...,T do 23: = /%

5: Receive xL 7 o end if )

: R X, [IT* X .

6 T ¢~ SETRATE(t xt;‘ D ) Contextual  95.  jf ADVERSARIAL then

7 Set gy,; o< exp (*7]:[/:—1,1) Vi € [T r Model 26: Set p; as in adversarial setting section
8  ji ¢ RECOMMEND(x1.q;) Selection .. = F e
9: Output §y 5, ~ fi.j, as the prediction for x; - . i tooerne

10:  Compute z, = max {55, € (§,,w,)} q 28 endi

11:  Sample U; ~ Ber () Active 29: return

12: ifU; = land C; < bthen [ Queries 30: end procedure

13: Query the label y; -

14: Ci+Ci1+1 29: procedure RECOMMEND(x¢, q,)
15: Compute £;: £y j =1{f; #w},Vj€ H]—'H 30: if STOCHASTIC then

16: Estimate model loss: /; ; = [Z’ REall 3L Wi =3 e Gimi(%e)
17: Update &,: 0y ; « (mi(x,),0,;),Vi € 1] | Model 32 ji 4= maxind(w,)

Is: P —P, 8 Updates 33: .end if

Lo, else t t=1 T 34: if ADVERSARIAL then

: - - 3s5: i ~

o Li=L 36: i (xe)
21: Gy« C ] : g e
22: end itf; t=1 37: end if
22: end for 38: return j;

> 39: end procedure

We denote by 7} := (w;, I1{y, # y}) as the expected loss if the true label is y, where Wi = Tmagind(q, ) (Xt)
and maxind(w) := arg max;.,, cw Wj-



Comparison against Related Work

Algorithm | Online bagging Hedge EXP3 EXP4 Query by Committee ModelPicker CAMS
Setup bagging online learning bandit contextual bandits active learning model selection (ours)
model selection X v v v X v v
full-information v v X X v v v
active queries X X X X v v v
context-aware X X X v X X v




Theoretical Guarantees

e Pseudo-regret for stochastic setting

Ry (A) = E[L7] - T min i (1)

where u; represents the expected loss of policy i if recommending the
most probable model 7 S Ex e (€4 maxind(rs (x)) )

e Expected regret for adversarial setting

where ft,i represents the expected loss of policy i if randomizing the
model recommendation at ¢, ¢ ; := (m; (X¢) , &)



Theoretical Guarantees

e Query complexity and tight regret bound under
® Stochastic data streams
e Adversarial data streams
¢ Finite policy / model classes

Algorithm Regret Query Complexity
Exp3 2v/Tklogk -
Exp4 V2Tklog G -

. ~ 62max; Aik/ (N log k) - e
Model Pickerstochastic A = min i Af/ﬁ)] V2T logk(1+4%)
Model Pickeragversarial  2v/27T log k 5v/Tlogk + 2Lt

= A 2w 2 = A 2w\ 2 N

CAMSgtochasﬁc (W‘ W{i + TN‘L” (ltln-’:t

CAMS, yersarial 2¢y/In ¢/max{pr, 1/ -y/Tlog|II*| O << mdi:ig%} —+ ir*> (lnT)>




Experiments

dataset classification total instances testset stream size classifier policy
CIFAR10 10 60000 10000 10000 80 85
DRIFT 6 13910 3060 3000 10 11
VERTEBRAL 3 310 127 80 6 17
HIV 2 40000 4113 4000 4 20
CovType 55 580000 100000 100000 6 17

e Baselines

context-free: Random Sampling (RS, query the instance label with fixed
probability), Query by Committee (QBC, committee-based sampling),
Importance Weighted Active Learning (IWAL, Calculate query probability
based on labeling disagreements of surviving classifiers), Model Picker
(MP, employ variance based active sampling)

contextual: Contextual-QBC (CQBC), Contextual-IWAL (CIWAL), Oracle
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Experiments
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