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Introduction

Significance and Limitation of Large Language Models

* Large Language Models (LLMs) have demonstrated exceptional performance across a broad spectrum of tasks, significantly
revolutionizing the landscape in diverse areas driven by artificial intelligence. However:

* Limitation of Full Fine-Tuning: Computationally expensive in adapting pre-trained models to a large number of
downstream tasks.

* Continual Learning Challenges:

* Catastrophic Forgetting: when learning multiple sequential tasks, model performance on previous tasks significantly
deteriorates upon training with new data.

* Forward Transfer: harnessing knowledge from old tasks to enhance the learning of new tasks.

Parameter-Efficient Tuning (PET) for Continual Learning (CL)

* Low-rank Adaptation: LoRA [1] and its variants have been proposed to prompt parameter-efficient learnings for LLMs.

* Existing PET methods for CL primarily focused on mitigating forgetting issue [2], often overlook the equally important
objective of facilitating forward knowledge transfer.
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Introduction

Knowledge Transfer among Tasks

* Non-PET in CL: while existing non-PET knowledge transfer in CL have distinctive approaches, they are not
directly applicable to CL in PET framework due to prohibitive computational costs.

* Knowledge Transfer in Parameter-Efficient Fine-Tuning for LLMs: parametric knowledge transfer paradigm
[3] uses knowledge embedded within a teacher’s parameters by extracting task-specific parameters and injecting
them into a student model via sensitivity metrics, however, such methods do NO'I" exist in CL for LLMs.
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Seeking to explore a new dimension in CL for LLMs
How can we effectively inject knowledge from previous tasks into new tasks (for improving
generalization) while maintaining the orthogonality of each task’s low-rank subspaces (for

mitigating forgetting) to facilitate parameter-efficient continual learning?

Contribution

Novel Parameter-Efficient Continual Learning Framework for LLMs

* Balance generalization through parametric knowledge transfer and mitigation of forgetting
through low-rank orthogonal subspace learning for new tasks

Superior Performance over Existing State-of-the-art Approaches

* Through comprehensive evaluations, our method demonstrates superior performance over
existing state-of-the-art approaches on standard continual learning benchmarks

In-depth Analysis for Parametric Knowledge within CL for LLMs

* Provide in-depth analysis to deepen understanding of the dynamics of parametric knowledge
within CL for LLMs, pinpointing critical factors that drives its effectiveness



CL Maestro: Learn More but Bother Less

Continual Learning (CL) Problem Setup

* Asequence of tasks {7, T », ..., I 7} over time, each &, with data distribution &, and a separate target dataset
Csjk — {(xk,i, yk,i)}?;1 Where xk,i - ‘%‘k and yk,i — ?k

* Incremental SVD-based low-rank matrix U*Z*V* to fine-tune task 7 » where U ke RYr Yk e R™ % and ¢ e R™

(singular values {4;}, ;. with r < min (d,, d,)), and to enforce orthogonality, use regularizer:
ZWU,V)=UU -1z +|IVV' ~I||;

T
T
. Goal: mglx Zk:l Z(x,y)egk log pp(y | x), where @ = W, + ,; U*L*V* and W, is pre-trained model

Two Stages of Our Method (LB-CL)

* (i) Learning from knowledge extraction and injection, which transfers knowledge from previously learned tasks to new
tasks by incremental SVD triplet (a singular value and its corresponding singular vectors) sensitivity metric

* (ii) Training in Orthogonal Subspaces, which keeps low-rank subspaces of new tasks orthogonal to those of old tasks
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Figure 2: Overview of our LB-CL framework. Starting with the pre-trained model including SVD
weights of previous tasks, sensitivity metrics are calculated using a set of seed samples, facilitating
the extraction of task-specific knowledge. Subsequently, the extracted layer triplets initialize SVD
weights for the new task. Then, the new task is trained in an orthogonal subspace, employing
orthogonal gradient projection to minimize forgetting.



Experiments on Continual Learning Benchmarks

* Metric: Define the testing accuracy on task J; after training on task 7 ; as g; ;. The main metric for evaluation is
’ T
Average Accuracy (AA), calculated as the mean accuracy across all tasks after training on the last task: T Z a; 1
i=1
Table 2: Testing performance on two standard CL benchmarks with TS5-large.
Standard CL Benchmark Large Number of Tasks
Order-1 Order-2 Order-3 avg | Order-4 Order-5 Order-6 avg
SeqFT 18.9 24.9 41.7 28.5 7.4 7.3 7.4 7.4
SeqLoRA 39.5 31.9 46.6 39.3 4.9 3.5 4.2 4.2
IncLoRA 63.4 62.2 65.1 63.6 63.0 57.9 60.4 60.5
SeqSVD 40.0 63.3 44.9 49.4 13.7 13.8 12.2 13.2
Replay 50.3 52.0 56.6 53.0 54.5 54.3 53.5 54.1
EWC 46.3 45.3 52.1 47.9 44.9 44.0 45.4 44.8
LwF 52.7 52.9 48.4 51.3 49.7 42.8 46.9 46.5
L2P 59.0 60.5 59.9 59.8 57.7 53.6 56.6 56.0
LFPT5 66.6 71.2 76.2 71.3 69.8 67.2 69.2 68.7
L-CL 75.3 73.5 71.9 73.6 66.5 64.0 69.0 66.5
B-CL 76.4 71.5 75.1 74.3 65.7 66.4 69.2 67.1
NLNB-CL 76.0 73.4 74.0 74.5 67.6 65.3 62.6 65.2
O-LoRA 74.9 75.3 75.9 75.4 70.5 65.5 70.5 68.8
LB-CL 76.9 76.5 76.8 76.7 68.4 67.3 71.8 69.2
ProgPrompt 76.1 76.0 76.3 76.1 78.7 78.8 77.8 78.4
PerTaskFT 70.0 70.0 70.0 70.0 78.1 78.1 78.1 78.1
MTL 80.0 80.0 80.0 80.0 76.3 76.3 76.3 76.3




Experiments on In-depth Analysis of LB-CL

Different initialization strategies
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Figure 3: Comparison of different initialization
strategies across three orders of standard CL
benchmark. The "Avg" value represents the aver-
age testing accuracy, illustrating how each strat-
egy stabilizes learning performance.
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Figure 4: Impact analysis of seed sample quan-
tity on the performance in LB-CL, evaluated
across three orders of standard CL benchmark.
This investigation highlights the influence of ini-
tial seed samples on model effectiveness.

Training computation Costs

Table 3: Comparison of training computation cost between LB-CL and O-LoRA.

Method | GPU Memory | Num of training params/task

O-LoRA 24.82 GB
LB-CL 28.28 GB

r(m+n)
rlm+mn)+r

Different pre-trained models Optimal Ranks

Table 5: Comparisons of different models’ per- Table 4: Comparisons of different rank r of low-
formances across three task orders in standard rank matrix. This experiment is conducted based
CL benchmark. on T5-large in standard CL benchmark.

(T5-base) Order Order
Method 1 2 3 avg

O-LoRA 729 723 72.6 726

LB-CL 738 744 724 1735 2 767 712 752 763
4 770 768 759 76.6

r-dim 1 2 3 avg

(T5-large) Order 8 769 765 768 176.7
Method 1 2 3 avg 16 774 760 755 76.3
O-LoRA 749 753 759 754 Std 025 044 060 0.18

LB-CL 769 765 768 76.7

Parametric Knowledge Distribution
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Figure 5: Comparison of sensitivity scores and Fisher information of encoder and decoder Layers,
and both results are the average results of three task orders in standard CL benchmark.



Summary

Investigated the balance between overcoming forgetting and achieving generalization in continual learning for
LLMs

Decomposed generalization error with the task low-rank matrix initialization, then proposed a novel framework,
LB-CL, explored parametric knowledge transfer between tasks and utilized the inherent forgetting less ability of
low-rank matrix

Instead of storing extra task-specific auxiliary parameters, only utilize low-rank parameters which would be
merged into the pre-trained model

Experiments across standard CL benchmarks validate the effectiveness of LB-CL

Analyzed critical factors influencing initialization in CL, providing insights for further enhancements in this field



