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Introduction

Significance and Limitation of Large Language Models

• Large Language Models (LLMs) have demonstrated exceptional performance across a broad spectrum of tasks, significantly 

revolutionizing the landscape in diverse areas driven by artificial intelligence. However:

• Limitation of Full Fine-Tuning: Computationally expensive in adapting pre-trained models to a large number of 

downstream tasks.

• Continual Learning Challenges:


• Catastrophic Forgetting: when learning multiple sequential tasks, model performance on previous tasks significantly 
deteriorates upon training with new data.


• Forward Transfer: harnessing knowledge from old tasks to enhance the learning of new tasks.


Parameter-Efficient Tuning (PET) for Continual Learning (CL)

• Low-rank Adaptation: LoRA [1] and its variants have been proposed to prompt parameter-efficient learnings for LLMs.

• Existing PET methods for CL primarily focused on mitigating forgetting issue [2], often overlook the equally important 

objective of facilitating forward knowledge transfer.
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Introduction

Knowledge Transfer among Tasks

• Non-PET in CL: while existing non-PET knowledge transfer in CL have distinctive approaches, they are not 

directly applicable to CL in PET framework due to prohibitive computational costs.


• Knowledge Transfer in Parameter-Efficient Fine-Tuning for LLMs: parametric knowledge transfer paradigm 
[3] uses knowledge embedded within a teacher’s parameters by extracting task-specific parameters and injecting 
them into a student model via sensitivity metrics, however, such methods do NOT exist in CL for LLMs.


Motivation Experiments


References
[3] Ming Zhong, Chenxin An, Weizhu Chen, Jiawei Han, and Pengcheng He. Seeking neural nuggets: Knowledge transfer in large language models from a parametric perspective. In The Twelfth International Conference on Learning Representations, 2024.



Novel Parameter-Efficient Continual Learning Framework for LLMs

• Balance generalization through parametric knowledge transfer and mitigation of forgetting 

through low-rank orthogonal subspace learning for new tasks


Superior Performance over Existing State-of-the-art Approaches

• Through comprehensive evaluations, our method demonstrates superior performance over 

existing state-of-the-art approaches on standard continual learning benchmarks


In-depth Analysis for Parametric Knowledge within CL for LLMs

• Provide in-depth analysis to deepen understanding of the dynamics of parametric knowledge 

within CL for LLMs, pinpointing critical factors that drives its effectiveness

Seeking to explore a new dimension in CL for LLMs
How can we effectively inject knowledge from previous tasks into new tasks (for improving 
generalization) while maintaining the orthogonality of each task’s low-rank subspaces (for 

mitigating forgetting) to facilitate parameter-efficient continual learning?

Contribution



Continual Learning (CL) Problem Setup

• A sequence of tasks  over time, each  with data distribution  and a separate target dataset 

 where  and 


• Incremental SVD-based low-rank matrix  to fine-tune task , where  , ,  and  
(singular values  with ), and to enforce orthogonality, use regularizer: 

 


• Goal: where  and  is pre-trained model


Two Stages of Our Method (LB-CL)

• (i) Learning from knowledge extraction and injection, which transfers knowledge from previously learned tasks to new 

tasks by incremental SVD triplet (a singular value and its corresponding singular vectors) sensitivity metric


• (ii) Training in Orthogonal Subspaces, which keeps low-rank subspaces of new tasks orthogonal to those of old tasks
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CL Maestro: Learn More but Bother Less
Two Stages of Our Method (LB-CL)


• (i) Learning from knowledge extraction and injection, which transfers knowledge from previously learned tasks to new tasks by incremental SVD triplet (a singular value and its corresponding singular vectors) sensitivity metric

• (ii) Training in Orthogonal Subspaces, which keeps low-rank subspaces of new tasks orthogonal to those of old tasks




• Metric: Define the testing accuracy on task  after training on task  as . The main metric for evaluation is 

Average Accuracy (AA), calculated as the mean accuracy across all tasks after training on the last task: 
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Experiments on Continual Learning Benchmarks



Experiments on In-depth Analysis of LB-CL

Different initialization strategies Number of seed samples

Training computation costs

Parametric Knowledge Distribution

Optimal RanksDifferent pre-trained models



• Investigated the balance between overcoming forgetting and achieving generalization in continual learning for 
LLMs


• Decomposed generalization error with the task low-rank matrix initialization, then proposed a novel framework, 
LB-CL, explored parametric knowledge transfer between tasks and utilized the inherent forgetting less ability of 
low-rank matrix


• Instead of storing extra task-specific auxiliary parameters, only utilize low-rank parameters which would be 
merged into the pre-trained model


• Experiments across standard CL benchmarks validate the effectiveness of LB-CL


• Analyzed critical factors influencing initialization in CL, providing insights for further enhancements in this field

Summary


