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Uniqueness and Redundancy
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1. Geometrically grounded as predicts 3D representation

2. More freedom in modeling complex geometry as predictions are not pixel-aligned

3. Flexibility in density of predicted gaussians for better modeling

4. Use multi-view information effectively to get better 3D predictions with improved 

consistency

5. Generalizable because we learn 3D priors

6. Plan to further expand to unposed 3d prediction

1. PID gives a detailed breakdown about the Mutual Information between 2 
concepts. This can be leveraged to better model uncertainty and can find 
applications in fields like Active learning.

2. PID can be extended to multiple modalities and other models.

Future Works
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