27 FHRDYE

<||I

YONSEI UNIVERSITY

Hierarchical Federated Learning with
Multi-Timescale Gradient Correction

Wenzhi Fang (Purdue), Dong-Jun Han (Yonsei University), Evan Chen (Purdue),
Shigiang Wang (IBM), Christopher G. Brinton (Purdue)

9
;9 :l?ﬁo.;'&.‘.
5? NEURAL INFORMATION
';32. , PROCESSING SYSTEMS
NG



Motivation of HFL

* Federated learning
- Devices directly communicate
with the cloud server




Motivation of HFL

4 )
* Federated learning
- Devices directly communicate
with the cloud server
\Z —/

* Some potential problems
- Topology of practical networks, e.g., fog learning system



Motivation of HFL

4 )
* Federated learning
- Devices directly communicate
with the cloud server
\Z —/

* Some potential problems
- Topology of practical networks, e.g., fog learning system
- Large communication latency between devices and remote server



Motivation of HFL

4 N )
* Federated learning
- Devices directly communicate
with the cloud server
\Z NG ~/

* Some potential problems
- Topology of practical networks, e.g., fog learning system
- Large communication latency between devices and remote server

* Hierarchical Federated Learning
- Reduce the communication frequency with the cloud server

- Group devices into multiple cells and introduce edge servers to coordinate the
training within each cell



Problem Formulation
* Training Objective
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* f(z)denotes the global loss fi(z)1s the group loss Fi(x) represents the client loss

* HFedAvg algorithm: main procedures

|. Local model updates at devices
* Conducting SGD iterations

2. Edge server aggregates local models from clients within its coverage
*  Communication period aggregation happens every H local iterations

3. Global model aggregations

e Communication period Aggregation happens every E edge aggregations
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Multi-timescale gradient correction
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* Proposed Algorithm: =i, = =i — v(VF (b5, &5) + 2 + o)
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Group model drift

Global aggregation — performed after every I group aggregations
Group aggregation — performed after every H local iterations

Central server
(Global aggregator)

Group-global
correction

Group
Group aggregator . model drift
Client-group

correction

Client
model drift
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ren each client
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Multi-timescale gradient correction

* Update correction variables via accumulated gradients

Algorithm 1: HFL with Multi-Timescale Gradient Correction (MTGC)

Input: Initial model Z°, global aggregation period E group aggregation period H, learning rate v, and

group-global correction ¢ = — - ZZEC VF;(x! 10, )+ ZJ ey Z'LGC VF; (iczo, ) Vj
1 each global round ¢ =0,1,... ,T —1do

2 Group model initialization: wt 0=zt vy
3 Clrent -group correctron 1n1t1ahzati0n
__VF( 107 )+ ZzeCVF( an ) VLGCJav]

4 each group communlcatlon round e=0,1,..., E —1do

5 Local model initialization: z}’ 0 —mt €, Vi, j

6 each local iteration h = 0,1, ..., H —1do

7 L x il = 331 E=" (VF (:I:Z S, b+ 2] —I—y]> ,VieC;,Vj ¢ Clients do in parallel
8 Group aggregation: wt et %Ziecj x%

J )
9 Client-group corr. update: z\*™'=z"°+ R (zy 5 —x°™),VieC;,Vj o Clients do in parallel
N —t E

10 Global aggregation: " =5 Z =1
11 Group-global corr. update: yj yj = Ew (wt B if:t+1) , V7 ¢ Group aggregators in parallel
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Update after each global aggregation



Convergence Analysis

* The iterates generated by MTGC satisfy
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— This convergence rate is dominated by the firsttermas 7—
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Convergence Analysis

* The iterates generated by MTGC satisfy
s Sl <o e+ () o 2p) )

— This convergence rate is dominated by the firsttermas 7—

— Linear speedup in the number of group aggregations E
— Linear speedup in the number of local updates H

— Linear speedup in the number of clients N

* For the first time attain these results for HFL without relying on data
heterogeneity assumptions
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* FedDyn: based on a dynamic regularization term

* H-FedAvg: no gradient correction
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