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Uniform sampling is (maybe) all you need

Reduction

Uniform sampling from
a convex body K

Sampling from a log-concave
dr x exp(—V)dx

® Main subroutine in volume computation
® System biology



Uniform sampling in formulation

Problem. Let K: convex body in R? and 7z = Unif(K). How many membership oracle
queries are needed to generate a sample X whose law is e-close to 7 in some D?

D(law(X), ) < € for some probability divergence/distance D = TV, KL, ¥* etc.



Geometric random walk

Ball walk(9) Hit-and-Run

1. Pick z € B4(x) 1. Pick a uniform random line £ through

the current point x
2. Move to z if z € K. Stay at x o.w.

2. Move to a uniform random point on
the chord 2N K




Another line of log-concave sampling research

Problem (Well-conditioned log-concave sampling).

Let 7 & exp(—V) be a smooth unconstrained distribution with al < V?V < I
(strong convexity and smoothness of a potential V) over R

How many access to the first-order oracle of V are needed to generate a sample X
whose law is &-close to x?7




Well-conditioned log-concave sampling

General approach for getting an implementable algorithms

1. Understand the Langevin dynamics (SDE) with stationary 7 o« exp(—V):
dX = — VV(X)dt ++/2 dB,
2. Discretize it In time:

e® Euler-Maruyama discretization
e Randomized midpoint method

® Soon...



Well-conditioned log-concave sampling

Analysis
1. Establish the mixing of the Langevin dynamics in W,, KL, y* (or generally Rényi)

2. Discretization-analysis somehow preserves the mixing metric

® Girsanov's theorem [Dalalyan and Tsybakov'12]

® Interpolation method [Vempala and Wibisono'19]
e Hypercontractivity [Chewi et al.’21]}

e Shifted composition rule [Altschuler and Chewi'24]



Hierarchy of probability distance/divergence

du
R (u||7) = esssuplog —
, drx

du .
_M[(d_lz_)q 1] (g-Rényi divergence)

R (pll7) =

Py (ullz) = log (72 (ullz) + 1)

TV(u, m) = sup [u(S) — 7(S)|

Pinsker e

g—1 -

Wz(//ia m) = 1nf _(X,Y)NF[HX — YHZ]
I'(u,m)




A current state of affairs

[Constrained sampling]

Algs

Ball walk, Hit-and-Run
Metrics

TV, )(2
Tools

Conductance

Fundamental gap here?

[Unconstrained sampling}

Algs
Langevin-based
Metrics

R

q
Tools

Wasserstein calculus, optimal transport,
Markov semigroup theory, interpolation
method, Girsanov's argument, Shifted
composition rule,...........
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Let's bridge this gap

[Constrained sampling]

Algs
New sampler
Metrics

R, (and £ in fact)

Tools

Continuous interpolation via a
forward /backward SDE

Can borrow
these techniques!

[Unconstrained sampling}

Algs
Langevin-based
Metrics

R

q
Tools

Wasserstein calculus, optimal transport,
Markov semigroup theory, interpolation
method, Girsanov's argument, Shifted
composition rule,...........
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In-and-Out

[Forward| Sample y,. ; ~ N(x;, il )

[Backward] Sample x;, ; ~ Ny, 1, b)) |

* One iteration = forward + backward step

In-and-Out

IN-N-OUT
o BURGﬁg



In-and-Out

Input: initial point x, ~ my & convex body K C I 4 & threshold N & step size h
Output: x;

@ Fori =0,..T
1. Sample y;.; ~ N(x;, hl;) = x; + N(O,hl,)
2. Sample x; 1 ~ N(y; 1, 1) |

[Implementation]

- xi-l—l ~ N(yl-l-l’hld) until xi-l—l e K
- If [# attempts > N]|, then declare Failure
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Where does it come from?

Connection to proximal sampler [Lee, Shen, and Tian'21]

d

Goal: Sample from z(x) o< exp(—V(x)) over I

To this end, augment another variable y € R to consider

1 2
a(x, y) o exp(—V(x) — > =yl )

Algorithm: Repeat

1. Sample y.,; ~ #/¥=%(y) = N(x;, hl))

2. Sample x;, | ~ =i (x) o exp(—V(x) Y [x — sz)
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Where does it come from?

Connection to proximal sampler [Lee, Shen, and Tian'21]

In-and-Out is the Proximal sampler with z(x) o 14(x)

Algorithm: Repeat

1. Sample y;, | ~ Y 1X=x (y) = N(x;, hi)

2. Sample x; | ~ X (x) eXP(_E [ x — sz) %
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Proximal sampler in measure level

Forward £
step ¥

Law of X,
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Outline of analysis

1. Contraction through one-iteration of INO (proximal sampler)

2. Query complexity of the implementation for the backward step

13



Contraction via forward /backward heat-flow

Forward / backward SDE interpretation by [Chen et al.’22]

Forward step: Sample y;, | ~ a1 X=% (y) = N(x;, hil))

Zy ~ law(X;)  seememen dZ, = dB, for t € [0,71] mewe Zy, ~ law(Y;; )
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Contraction via forward /backward heat-flow

Forward / backward SDE interpretation by [Chen et al.’22]

Backward step: Sample x;, | ~

Zo ~ 1aW(X)  smemen dZ, = dB, for 1 € [0,h] sy

7 ~ law(X,y,) K

ﬂX‘

I=Vir1 (x) exp(

V(x) 1 | &
- x I x_ )

dZ = Vlog(z*Q,_)(Z")dt + dB, for t € [0,h] sweses

)
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Contraction via forward /backward heat-flow

Q. Benefits of introducing an SDE representation?

Al. Avoid discretization-analysis
A2. Use tools from Markov semigroup theory
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Contraction via forward /backward heat-flow

Forward / backward SDE interpretation by [Chen et al.’22]

Using Markov semigroup theory + Wasserstein calculus, one can show

Forward SDE: dZ, = dB, with Z, ~ u¥ = Z, ~pu}

2/ XX
2, Y Y X (/’ti Hﬂ' ) : , . :
lrt) < under a Poincaré inequality (Pl
4 (/’tH_]H ) 1 + h/CPI(ﬂ'X) g y ( )
KL(u2||z*
KL(,uiilHﬂY) < willr) under a log-Sobolev inequality (LSI)

1 + h/CLSI(ﬂ'X)
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Contraction via forward /backward heat-flow

Forward / backward SDE interpretation by [Chen et al.’22]

Using Markov semigroup theory + Wasserstein calculus, one can show

Backward SDE: dZ~ = Vlog(z*Q,_)(Z ") dr + dB, with Z;~ ~ ’l/tl.);l — 4, ~ /"i)—il

2, Y Y
x (i llz") | | |
2. X X 1+ ,
S Nxt) < under a Poincaré inequality (Pl
4 (//tl_|_1H ) 1-|—h/CPI(7TX) g Yy ( )

KL(ujp | 7"
KL(,ui)_(HHﬂX) < iy [l7) under a log-Sobolev inequality (LSI)
1 + h/C gi(7%)
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Contraction via forward /backward heat-flow

Forward / backward SDE interpretation by [Chen et al.’22]

Composing one forward + backward contraction,
x|
(1+ h/ Coy(n%))

KL || %)
(1+ h/Cs(n®))”

)(z(pti)ilHﬂX) < under a Poincaré inequality (PI)

KI—(//ti)_(HHﬂX) <

under a log-Sobolev inequality (LSI)

* Can still use this result, though 7y is not smooth around 0K
(Convolve with N(0,el,) & Use the lower-semi continuity of f~divergence as ¢ — 0)

* Can be extended to a g-Rényi divergence
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Contraction via forward /backward heat-flow

Functional inequalities for =

Poincaré inequality (Pl)

var, f < Cpi(r) -ﬂ[HVfHZ] for any smooth f: R — |

Log-Sobolev inequality (LSI)

Ent (%) < 2C g1(m) -ﬂ[HVﬂ\z] for any smooth f: RY - R

Caveat. This depends only on a measure &, not on a Markov chain/kernel
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Contraction via forward /backward heat-flow

d

Known results on log-concave distribution 7 « exp(—V) over |

1. Cpi(m) < C g1() in general

2. Cpy(m)

® HCOV(]T)Hop < Gpp(m) < Wi HCOV(ﬂ)Hop

® KLS conjecture: v, = O(1)

o v, S logd [Klartag'23]

3. Cq1(m) = O(D?) for a log-concave 7 with support of diameter D
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Contraction via forward /backward heat-flow

Relating mixing guarantees to functional inequalities

Theorem. For ¢ € (0,1) and K C By(0), INO with step-size A and M-warm initial
distribution achieves &£ (u, || 7x) < € after the following # of iterations:

qd?||Cov(mp)llop log - for g > 2

n < 1nmin log M

E

gd’D? log

forg > 1

(1) Substitute the known bounds on Cpy, C, 57 and h < d ™2

21



Control over the backward step (RGO)

Rejection sampling for the backward step x; | ~ N(y, 1,2l |,

[Implementation via rejection sampling]

= xH_l ~ N(yH-l’hId) Until )CH_l = K

But this is bound to fail
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Control over the backward step (RGO)

Rejection sampling for the backward step x; | ~ N(y, 1,2l |,

Suppose we're already at stationarity 7% = Unif(K)

£(y)
vol(K)

— gl =gt # N(O,hl,) =
where £(y) is a Gaussian version of local conductance [Kannan et al.’97] defined by

[ exp(—; Ilx = ylI7) dy

£(y) =
[exp (=7 Ilx = yl12) dy

— Simply, the success probability of the rejection sampling at y
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Control over the backward step (RGO)

Rejection sampling for the backward step x; | ~ N(y, 1,2l |,

Then the expected number of trials (until success) for one iteration is

||
3

[ ] _ J 1 f(y)
£(y) « C(y) vol(K)

Q. Can bypass this issue?

30



Control over the backward step (RGO)

Rejection sampling for the backward step x; | ~ N(y,,.(, il |,

n~ over K I
Forward heat-flow

O-blow up of K
Ks={x:d(x,K) <4}

Lemma. 7/(l d\K5) < exp(—0O(#?)) for step-size h = O(d~*) and & = t/d.

— K is sort of “effective domain” of 7"
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Control over the backward step (RGO)

Rejection sampling for the backward step x; | ~ N(y,,.(, il |,

n~ over K I
Forward heat-flow

O-blow up of K
Ks={x:d(x,K) <4}

Insight: Ignore whatever happens outside of this effective domain Kj
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Control over the backward step (RGO)

Rejection sampling for the backward step x; | ~ N(y, 1,2l |,

Q. Characteristic of the complement of the effective domain K?

Proposition. For y € K§ with § = t/d and h < d™*,
£(y) < exp(—Q(t%)) .
from K for the rejection sampling — £(y)~ 1 > exp(Q(tz))

.. Can ignore algorithmic behaviors from K5 by setting a threshold N = a(exp(tz))
and considering the algorithm as having “failed” it #trials > N
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Control over the backward step (RGO)

Rejection sampling for the backward step x; | ~ N(y, 1,2l |,

Theorem. (Complexity of backward step) For failure prob. 6 € (0,1) and T € N,
there exists suitable choices of parameters A, N such that

1. of one backward-step < 6/T

2. per backward-step < M polylog(TM/0o)

.. During T iterations, (1) the total failure prob. is <6, and
(2) the total query complexity is O (MTponIog(1/5)>
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Guarantee of In-and-Out

Assumption:

1. Access to a membership oracle for a convex body K € R? with unit ball in K.
2. An initial my is M-warm w.r.t. target 7 = Unif(K)

- Precisely, dny/dn < M a.s.

Theorem. Given failure prob. 6 € (0,1), target acc. € € (0,1), and g > 1,

there exists choices of parameters A, N such that with probability > 1 — 9,

INO started at 7y ensures £ (law(X,, W) < e
after n = <Qd2HCOV(ﬂ)HOp ponIog(M/ée)) iterations,

using O (quzHCov(ﬂ)Hop polylog(l/ée)) membership queries in expectation.
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Matching results of Ball walk

Theorem. Given failure prob. 6 € (0,1), target acc. € € (0,1), and g > 1, there
exists choices of parameters &, N such that with probability > 1 — 9,

INO started at 7 ensures &£ (law(X,)||7) < €
by using O (QMdZHCOV(]Z')”Op polylog(l/ég)) membersh|p queries in expectation.

Previous best complexity via Ball walk:
— Achieving e-TV distance from M-warm start needs O(MdzHCov(Jt)Hop polylog(l/ée)) queries.

INO recovers the matching result under and
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Chicken-and-egg problem

Awkward situation...

— |
INO needs O (quZHCov(ﬂ)Hop polylogé—) queries where M = exp(@w(ﬂo\\ﬂ))
5

Observation

Needs & -warmness to get & -result (denote INO: & - X).
Same issue with BW (SW + rejection): £ — TV.

Q. How to get a warm-start in &£ __7
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Matthew Zhang

University of Toronto

38



Warm-start generation

Problem. Let K C R be a “well-rounded” convex body (i.e., —E[HXHZ] = 0(d))
containing a unit ball. Can we generate a warm start X such that

R o(law(X) || 1) = O(1)?

Note) There is a known method for making K well-rounded [Jia et al."21}

39



Previous approaches

A common approach is “annealing '

II/tO—)//tl—)'“—)Il/tl-—)ll/ti_l_l—)'"—)//tk—)][

® /iy easy dist. (from which we can easily sample)
e Generate p;, starting from u; (by some samplers)

e Here, u; is a warm start for p; . (i.e., 4; and u,., are already close)

40



Recall £, = log(y*+ 1)
Previous approaches

1. Uniform annealing [Dyer-Frieze-Kannan'89 ~ Kannan-Lovasz-Simonovits 97}
;= Kn (2" B,(0)) R oo |l i) = O(1)
2. Exponential annealing [Lovasz and Vempala'06}

p;  exp(—a; x) | Ro(u || i q) = O(1)

3. Gaussian annealing [Cousin and Vempala'18]

p; x exp(—=— [|x[I?) | . R oo || i) = O(1)

207
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Previous approaches

® Previous works rely on Hit-and-Run or [Speedy walk rejection sampling] for
sampling the annealing distribution ..

However, HAR or SW has guarantees in )(2 or TV.

42



Previous approaches

@@...'.
VoA Hol’)
P,: Markov kernel of the MCMC sampler

MCMC Sampler started at p, will output X ~ pyP with TV(uoP, 1) < €
In the next phase, an initial dist. is in fact pyP,, not y,.

No triangle inequality coupling TV and £ _,

43



Previous approaches

However, the annealing algorithm still proceeds as if the starting distribution is y,

Previous works use a coupling argument for analysis, reducing everything to TV.

44



Previous approaches

e Due to inexact error from Markov chains, any guarantee is eventually collapsed to TV

- Previous approaches cannot avoid this "TV-collapse™ issue

e If INO uses a warm start generated by this annealing scheme, then its final guarantee
ends up collapsing to TV as well
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Relay #__-guarantees across annealing?

L%OO

/ My

J R -guarantee
via

triangle ineq.

It a sampler has a &£ _-guarantee,
then can relay £ __-guarantees through the triangle inequality

46



X, 1s difficult

e Prior sampling & -guarantees involve a complexity at least linear in ¢
- Useless for &£

e A Markov-semigroup approach used for &£ doesn’t go through for &£

In this work, we boost TV — £ __ without overhead
via a log-Sobolev inequality (LSI)
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Revisit the theory of Markov semigroups

@ let P: QX F — [0,1] be a Markov kernel. Then,

pP(- )= j P(- | x) p(dx)

)

Pf(x):= j J(y) P(dy | x)

®
e Convergence rate is characterized by the contractivity of a Markov kernel:

1Pl
1P|l pesyp i= SUp -
O#feLf Hf H Lr

where LV := {f: E,[|fI’] < 00, E,f=0}.




Revisit the theory of Markov semigroups

The most classical setting is the “L*(7) — L*(x) contraction”

It v := ||P||;2_ ;2 then the so-called spectral gap of Pis 1 —y

Q. What about contraction in L® — L7
(recall ||f]]; :=1nf{C : |f| £ C} = esssup |f])
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Revisit the theory of Markov semigroups

Q. What about contraction in L — L7

Theorem [Rudolf'11]. Let P be a Markov kernel reversible w.r.t. stationary 7. Then,

|P" — 1 |l = 2esssup TV(6,P", 7)

where 1_ is the operator defined by 1 _(f) :=[E_f.
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Convergence from any start implies L *°-contraction

d
By substituting f = d—'u — 1, one can deduce
T
; d(uP") dy ;
R (uP" || ) < — 1 <|[|— -1 - 2esssup_TV(0,P", r)
dr L dr L &

log(1 +x) <x

. Uniform TV-bound over any start x € Q@ = A __-bound
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Functional inequalities for boosting

Q. When can we bound sup TV(o,P", #) without huge overhead?

xeld

— (PI) ensures an exponential contraction in y* such as

726, P" || m) S exp(— ) x*(5.P' || m)

Cpr(7)

— (LSI) ensures an exponential contraction in KL such as

KL(5,P" || @) S exp(—

KL(5 P!
CLSI(”)) L)
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Functional inequalities for boosting

Q. When can we bound sup TV(o,P", #) without huge overhead?

xeld

Recall 2 TV? < KL < log(1 + %) < 42 In general,
KL(6,P || @) = poly(d)
x(6.P || m) = exp(poly(d))

Under (P1), the convergence rate would have the overhead of log y; = poly(d)
Under (LSI), the convergence rate would have the overhead of log KLy = polylog(d)

LS| can provide &£ __-guarantee |
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Annealing through Gaussians

Work with the Gaussian cooling [Cousin and Vempala'18]:

Po = =" = W = Ping = = W= T with p, = N(O,O'l.zld)\K and 7 = Unif(K)
— Need a sampler for a truncated Gaussian

Proximal sampler once again!
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Sampling from a truncated Gaussian

Proximal sampler for a truncated Gaussian

|
w(x,y) xexpl—V(x) —— [|x — 2} with V(x) = x|I% - 1.Ax
(x.y) & exp(=V(@) = - [lx = 1) (@) = 5 [xll> - 1)
Algorithm: Repeat
1. Sample y.,; ~ #"¥=%(y) = N(x;, hl)
2. Sample x.,; ~ 7XI¥=ix1(x) cxexp(—V(x)—LHx—sz) = N( : Viils " Id)
l+ 2h 14+ ho 2" 1+he2 Vg

Q. What's (1) the convergence rate and (2) query complexity of the backward step?
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Uniform ergodicity of proximal sampler

Theorem. Under suitable choices of parameters, for any x € K,

R (6 P" || m) < € for 1 = N(0,6°1) |
poly(d, D)

E

atter n = ﬁ(quCLSI(n) log ) iterations.

Fact 1 [Bakry-Emery]. CLSI(N(% azld)) < o*
Fact 2 [Bakry-Gentil-Ledoux|. Convex truncation doesn't increase C ¢

;. C (7)) < 07
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Uniform ergodicity of proximal sampler

Theorem. Under suitable choices of parameters, for any x € K,

TV(6,.P", m) < € for = N(0,6°1) |
poly(d, D)

E

after n = 5(51202 log

) Iiterations.

Boost from TV (from any start) - £ __

R (UP" || ) < € tor m = N((),O'ZId) \K

5/



Query complexity of proximal sampler

Use a rejection sampling to implement the backward-step

Theorem. [Complexity] For a well-rdd convex K, failure prob. 6 € (0,1), target acc. € € (0,1),
1 parameters /i, N such that with probability > 1 — o,

the Proximal sampler with M-warm start ensures £ __ (law(X)||7) < €

by using E(Md%z polylog(s—) membership queries in expectation.
£
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Annealing through Gaussians

Employ the proximal sampler within the Gaussian cooling [Cousin and Vempala'18|:

Po = =" = W = Ping = = W= T with p, = N(O,O'l.zld)\K and 7 = Unif(K)

Set 002 = 1/d, and update according to
o (1+2) ifd'<e?<1

ot (1+=) ifl<o?<Sd
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Annealing through Gaussians

o (1+2) ifd'<e?<1

0-2(1+%) if 1 <07 <d

Query complexity of Gaussian sampling from an O(1)-warm start: d*c?
1. During d7! < al.z < 1, needs 5(61’) phases for doubling of 61.2 — # queries : d - d*c* < d°
2. During 1 < 01.2 < d, needs 5(61/01.2) phases for doubling — # queries : d/o” - d*c* < d°

through annealing: d°
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Wrap-up in the last phase

Wrap-up for uniform sampling in the last phase

w,=N@O,dl) |, — m=Unit(K)

Use the boosting for uniform sampling via LSI

— INO (or proximal sampler)’s complexity: 5(d2CLSI) = H(dzDz) in the last phase

01



Wrap-up in the last phase

Wrap-up for uniform sampling in the last phase

= NQO,dl)|, — = Unif(K)

Better way”’

Can work with the uniform dist. 7 over a K N By12(0) due to Z (7 || 7) = O(1)

Rationale: A log-concave dist. has a sub-exponential tail

P(IX — ull > n/d) < exp(—t + 1) when E_[||IX]|?] = O(d)
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Wrap-up in the last phase

Wrap-up for uniform sampling in the last phase

= NQO,dl)|, — = Unif(K)

After truncation by B ;/(0):

D = 0(d"?) so C, (%) = O(D?) = O(d)

. INO's complexity is d> for uniform sampling in the last phase
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Putting together

1. Annealing through Gaussian

~ D
O (a’3 polylog;) queries

2. Uniform sampling in the last phase

—~ D
O (d3 polylogé—) queries
5

—

C. 0 (d3 polylogé—) membership queries for uniform sampling with &% __-guarantee
£

— Matches the prior best known complexity in TV [Cousin and Vempala'18]
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