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Diffusion Models generate strange artifacts

Hands with extra (or missing) fingers are commonly seen in generated images.
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Toy Experiment
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Let’s start with a simple toy experiment

Training
Dataset of 3 shapes: Samples
1. Triangle
2. Square
3. Pentagon

Diffusion
Model

—>

All 64x64 grayscale images

Atmost one occurrence of each shape.
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Let’s start with a simple toy experiment

Training Generated
Dataset of 3 shapes: Samples Samples
1. Triangle
2. Square
3. Pentagon

Diffusion
Model

—>

All 64x64 grayscale images
Atmost one occurrence of each shape.

Surprising?
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What are Diffusion Models?
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What are Diffusion Models?

Forward Process (Data to Noise): Perturbing an image with multiple scales of Gaussian noise.
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What are Diffusion Models?

Forward Process (Data to Noise): Perturbing an image with multiple scales of Gaussian noise.

Q(Xt\xt—l) = N(Xt; v 1= 5txt—1,5t1) Q(XI:T‘XO) = HC_I(Xt|Xt—1)

a(xulx0) = N (x5 v/Goxo, (1 — @)1
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What are Diffusion Models?

Reverse Process (Noise to Data): Predict the noise added in the previous timestep

https://lilianweng.github.io/posts/2021-07-11-diffusion-models/
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What are Diffusion Models?

Reverse Process (Noise to Data): Predict the noise added in the previous timestep
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Mode Interpolation
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Mode Interpolation: 1D Gaussian

Let’s start with a simple 1D Gaussian with mean 1.
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Mode Interpolation: 1D Gaussian

Let’s start with a simple 1D Gaussian with mean 1.
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Mode Interpolation: 1D Gaussian

Consider a simple mixture of 1D Gaussians: p(z) = 1N (u1,02) + 2N (2, 02) + 2N (3, 02)
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Mode Interpolation: 1D Gaussian

Consider a simple mixture of 1D Gaussians: p(z) = N (u1,02) + 2N (2, 0%) + 2N (u3, 02)
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What is Mode Interpolation?

Diffusion models interpolate

Training Generated Real data has various
Samples Samples non-overlapping ‘modes’ b/w neighboring modes
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What causes Mode
Interpolation?
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What causes mode interpolation?

Diffusion models are score-based generative models

Score Function = V4 log g(x)

PDF

Log PDF
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What causes mode interpolation?

Diffusion models are score-based generative models

Ground Truth Score
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What causes mode interpolation?

Diffusion models smoothly approximates the true score function

Ground Truth Score o Learned Score Function Smooth approximation of
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What causes mode interpolation?

Diffusion models smoothly approximates the true score function
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Mode Interpolation: 1D Gaussian

Rate of mode interpolation decreases as the number of training samples increases

(a) Samples: 25000
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Mode Interpolation: 1D Gaussian

Rate of mode interpolation decreases as the number of training samples increases

(a) Samples: 25000 (b) Samples: 50000
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Mode Interpolation: 1D Gaussian

Rate of mode interpolation decreases as the number of training samples increases

o (a) Samples: 25000 (b) Samples: 50000 (c) Samples: 100000 (d) Samples: 500000
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Mode Interpolation: 2D Gaussian

(a) Real Data
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Mode Interpolation: 2D Gaussian

(a) Real Data (b) Generated Data
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Mode Interpolation: 2D Gaussian

(a) Real Data (b) Generated Data (c) Real Data
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Mode Interpolation: 2D Gaussian

Diffusion models choose to interpolate between nearest modes

(a) Real Data
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(b) Generated Data
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What is happening in the case of shapes?

Interpolation happens in representation space
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Diffusion Models know when
they Hallucinate
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Diffusion Models know when they Hallucinate
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Diffusion Models know when they Hallucinate
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Diffusion Models know when they Hallucinate

1D Gaussian
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Diffusion Models know when they Hallucinate
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Diffusion Models know when they Hallucinate
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Diffusion Models know when they Hallucinate
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Diffusion Models know when they Hallucinate
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Realistic Settings
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Let’s move on to realistic settings
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Let’s move on to realistic settings

FLUX.1 [schnell] FLUX.1 [schnell]

o o - . 12B param rectified flow transformer distilled from FLUX.1 [pro] for 4 step generation
12B param rectified flow transformer distilled from FLUX.1 [pro] for 4 step generation P LU Ipro] P&

blog] [model]
blog] [model] [blog] [ ]
image of a right hand placed on a wooden table. top vie Run

image of a left hand placed on a wooden table. top view Run
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Hands Dataset

Original Dataset

ADM

Afifi, Mahmoud. "11K Hands: Gender recognition and biometric identification using a large dataset of hand images." Multimedia Tools and Applications 78 (2019): 20835-20854.
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Hands Dataset

Original Dataset

ADM
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Hands Dataset

Original Dataset

ADM

Generated Dataset

Density

s
I i\ ’

Hallucination in Diffusion Models

1200

Detecting Hallucinations

Hallucinated

1000 1 | | In-Support

0.002 0.003 0.004
Metric Value

600

400

20

o

o

v

Hallucinations (extra fingers)

47




Recursive Model Training

Hallucination in Diffusion Models 48




Recursive Model Training

The internet is increasingly populated by more and more synthetic data.
Recursive training on synthetic data leads to mode collapse

Real data

\

Data® ) > Model 0

Fit

a & & >

Timeline 0 ... n
Shumailov, ., Shumaylov, Z., Zhao, Y. et al. Al models collapse when trained on recursively generated data. Nature 631, 755—-759 (2024). https://doi.org/10.1038/s41586-024-07566-y
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Recursive Model Training

The internet is increasingly populated by more and more synthetic data.
Recursive training on synthetic data leads to mode collapse

Real data Model-generated data
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Shumailov, ., Shumaylov, Z., Zhao, Y. et al. Al models collapse when trained on recursively generated data. Nature 631, 755—-759 (2024). https://doi.org/10.1038/s41586-024-07566-y
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Recursive Model Training

The internet is increasingly populated by more and more synthetic data.
Recursive training on synthetic data leads to mode collapse

Real data Model-generated data
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Shumailov, I., Shumaylov, Z., Zhao, Y. et al. Al models collapse when trained on recursively generated data. Nature 631, 755-759 (2024). https://doi.org/10.1038/s41586-024-07566-y
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-
Recursive Model Training: Model Collapse

Past work has focused on model collapse without considering the interaction between the modes

Generation 2 Generation 5 Generation 10 Generation 20

Bl Real Data
Il Synthesized Data

Alemohammad, Sina, et al. "Self-consuming generative models go mad." arXiv preprint arXiv:2307.01850 (2023).
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Recursive Model Training

Recursively training a DDPM on its own generated data using a square grid of 2D Gaussians

(a) Generation 1
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Recursive Model Training

Recursively training a DDPM on its own generated data using a square grid of 2D Gaussians

(a) Generation 1 (b) Generation 5
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Recursive Model Training

Recursively training a DDPM on its own generated data using a square grid of 2D Gaussians
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Mitigating Hallucinations with Pre-emptive Detection

Filter out hallucinated samples using the metric before training on samples from the previous generation of
the diffusion model

(a) 2D Grid of Gaussians

—e— Trajectory Variance Filtering
—e=— Random Filtering b

r

N
w

N
o

-
w

(=
o
S

ot

n
\
]

—— 4’"’;/ o=
/0— /

[

1 2 3 4 5 6
Generation of Recursive Training

% of Hallucinated Samples

b
o

Hallucination in Diffusion Models 56




Hallucination in Diffusion Models

Mitigating Hallucinations with Pre-emptive Detection

Filter out hallucinated samples using the metric before training on samples from the previous generation of

the diffusion model
0 (a) 2D Grid of Gaussians
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Summary

Introduce a failure-mode of diffusion models: mode interpolation
Explanation of why mode interpolation occurs
Metric to detect hallucinations in diffusion models

Potential hypothesis for inaccurate modeling of hands/limbs in
modern text-to-image generative models.

Novel Perspective on the Recursive Training of Generative Models
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