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Aggregation Functions

o Aggregation functions are a key component in the design of message
passing graph neural networks (MPGNNS).

@ MPGNNSs achieve their expressive power when the aggregation is
permutation invariant and distinguishes different neighborhoods.
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(a) Mean and Max both fail (b) Max fails (c) Mean and Max both fail

[Xu et al., 2019, "How Powerful are Graph Neural Networks?"]
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Sum-Based Aggregations: Solid Theory, Poor Performance

@ Sum-based aggregations such as DeepSets have such theoretical
guarantees but underperform in practice.

@ In reality practitioners prefer more complex aggregations...
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[Corso et al., 2020, "Principal Neighbourhood Aggregation for Graph Nets"]
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@ We ask: why this happens?
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A Possible Explanation: Neighbor Mixing

@ We suggest that a possible explanation for this gap is the inability of
sum-based aggregators to "mix" features of distinct neighbors.

@ We define the neighbor mixing for the /-th aggregation output with
respect to neighbors (i, ) as:
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A Possible Explanation: Neighbor Mixing

@ Intuitively, sum-based aggregators yield low mix(9

ij
pooling across neighbors.
o Namely, for y(xq, ..., x,) = Ezzl &(xx) we have:

values due to the
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A Possible Explanation: Neighbor Mixing

@ Intuitively, sum-based aggregators yield low mix(9

ij
pooling across neighbors.
o Namely, for y(xq, ..., x,) = 22:1 &(xx) we have:
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e Formally, to account for mixing that may occur subsequently:

values due to the

Proposition (Sum-based aggregation mixing values upper bound)
Let v(x1, ..., xn) = p (> k=1 ¢(xk)) be a sum-based aggregation. Then:
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Where Jy(.) is the Jacobian matrix of ¢ and H ) (.) is the Hessian matrix
of the /-th output of p.

= = = — Ty

Taraday et al. Sequential Signal Mixing Aggregation October 29, 2024



In Search of an Alternative: DeepSets from a

Convolutional Point of View

e Given a scalar multiset x = {xq, ..., x,}, define its corresponding
DeepSets polynomial:

px(t) == H(t — X;i)
i=1

@ The coefficients (ex(x)),_, are permutation invariant and form an
ensemble of separators.

o Representing (ex(x)),_, by their DFT:
n _2mij

Gx) = e(x)-e 1k (j=0,...,n)

k=0
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In Search of an Alternative: DeepSets from a

Convolutional Point of View

@ The coefficients of py(t) can be computed by:
@ Transforming the coeff. of each p;(t) = (t — x;) to the Fourier domain
@ Performing elementwise multiplication.
© Transforming back to the coefficients domain.
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Theorem (Representing scalar multisets)

Scalar multisets {xi, ..., x,} can be represented by an invariant-separating
map feony:

fconv(X) = léi)l h(Xi)

Where h: R — R is an affine map and () is the circular convolution
operator.
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The True Magic: Generalization to Vector Features

Generalized DeepSets Polynomial

Given a multiset X = {X{, ..., X,} Encode each element X; € R? as
a polynomial of another variable z:

Enc(X ZXU 21

Generalized DeepSets polynomial:

n

px(t,z) == H(t — Enc(X;)) = Z exe(X) - thz*
kI

i=1

Where ex¢(X) is the coefficient of tkz* in px(t, z).
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Sequential Signal Mixing Aggregation (SSMA)

@ Combining our construction with an MLP compressor yields the
"vanilla" version of SSMA.

@ Implementation highlights:

@ The circular convolution is implemented by applying FFT, performing
product along the neighbors and then transforming back using IFFT.

@ Element-wise normalization after the Fourier-domain product by taking
geometric mean.

© Low rank MLP using low-rank matrix factorization.

© Neighbor selection technique that reduces the neighborhood to
neighbors using attention slots.
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SSMA Architecture
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Benchmarking SSMA

@ We test the effectiveness of SSMA by incorporating it into popular
MPGNN architectures.

@ We evaluate both original and augmented architectures across a wide
range of benchmarks.

Module ENZYMES ©* PTC-MR ¢t MUTAG IMDB-B 1 ZINC |

GCN 51.0+10.63 59.85+4.04 84.231+9.86 68.80+3.49 0.347+0.01
GCN + SSMA 54.83+7.55 62.29+9.33 89.79+6.71 75.24+2.9 0.280+0.02
GAT 50.67+4.92 65.53+8.41 75.51+11.72 51.0+6.07 0.386-+0.025
GAT + SSMA 56.67+3.72 66.41+5.69 89.19+4.58 74.5+4.14 0.223+0.028
GATvV2 44.83+5.96 56.47+7.57 77.26+13.15 47.0+5.27 0.396-+0.006
GATv2 + SSMA 52.50+8.43 61.64+6.80 88.80+11.80 72.844.92 0.235-+0.003
GIN 49.50+4.58 60.46+9.10 86.45+8.17 71.343.97 0.252-+0.007
GIN + SSMA 51.69+8.04 61.28+9.23 90.51+6.97 74.1+5.02 0.222+0.003
GraphGPS 48.33+6.71 61.4146.91 79.91+10.23 69.645.54 0.251+0.012
GraphGPS + SSMA 49.1743.15 63.02+4.93 86.07+7.95 71.144.79 0.224-0.005
PNA 52.50+4.60 58.41+6.66 84.1949.44 71.9+4.46 0.192+0.001
PNA + SSMA 52.92+7.34 62.14+5.54 88.29+8.46 74.14+4.23 0.172+0.001
ESAN - 69.2+6.5 91.14+7.0 77.1+3.0 0.102-+0.003
ESAN + SSMA - 77.89+5.62 96.32+3.37 80.6+2.15 0.096-+0.002
Improvement (%) 7.2 5.3 8.9 17.7 20.36
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Benchmarking SSMA

LRGB OGB
Module N N N
Peptides-f Peptides-s Arxiv Products molpcba
AP 1 MAE | Accuracy T Accuracy T AP 1
GCN 61.1+1.04 0.28+0.01 65.640.55 63.843.45 0.21+40.01
GCN + SSMA 63.3+1.42 0.264-0.02 66.340.48 72.343.94 0.2340.01
GAT 63.410.68 0.27+40.01 62.1+0.64 60.617.65 0.21+0.01
GAT + SSMA 63.61-0.47 0.264-0.01 66.640.78 67.345.81 0.2240.01
GATv2 63.14+1.34 0.2740.01 62.81+0.85 56.748.25 0.18+0.01
GATv2 4+ SSMA 63.7+1.13 0.264-0.01 64.740.62 66.4+3.70 0.2240.01
GIN 60.440.96 0.2740.01 54.140.87 54.845.53 0.21+40.01
GIN + SSMA 62.5+1.37 0.264-0.02 66.4+1.52 67.0+5.79 0.2240.01
GraphGPS 58.81+1.22 0.28+40.01 63.8740.68 48.89+47.47 0.19+0.01
GraphGPS + SSMA  60.34+1.49 0.2740.01 66.71+0.73 67.62+5.46 0.2240.01
PNA 57.0f1.17 0.284-0.01 59.140.60 45.6416.52 0.1740.01
PNA + SSMA 61.1+1.75 0.2740.03 66.340.81 63.943.72 0.21+40.01
Improvement (%) 3.02 4.21 8.9 23.86 13.4
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