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Problem Definition
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• Find a design 𝒙 that maximizes certain desirable properties.
• For instance: 

• Find a DNA sequence with maximum binding affinity.

• However, evaluation 𝑔 𝒙  is prohibitively expensive.
• For instance:

• Expensive laboratory experiment to measure binding affinity.

• Offline Model-based Optimization (MBO): Given an offline 
dataset 𝔇 = 𝒙𝑖 , 𝑧𝑖 𝑖=1

𝑛  where 𝑧𝑖 = 𝑔 𝒙𝑖  with 𝑔(. ) is an unknown 
oracle function, find 

𝒙∗ = argmax
𝒙∈𝒳

𝑔 𝒙

[1] Brandon Trabucco, Xinyang Geng, Aviral Kumar, and Sergey Levine. Design-bench: Benchmarks for data-driven offline model-based optimization. In 
International Conference on Machine Learning, pages 21658–21676. PMLR, 2022.
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A direct approach to MBO

• Learn a surrogate 𝑔 𝒙; 𝝎∗  of 𝑔 𝒙  via fitting to the offline dataset.

𝝎∗ = argmin
𝝎

ℒ𝔇 𝝎

• The (oracle) maxima of 𝑔 𝒙  is then approximated via:

𝒙∗ = argm𝑎𝑥
𝒙

𝑔 𝒙; 𝝎∗

• Challenge: Predictions of 𝑔 𝒙; 𝝎∗  are unreliable in OOD regime.

3[2] Brandon Trabucco, Aviral Kumar, Xinyang Geng, and Sergey Levine. Conservative objective models for effective offline model-based optimization. In 
International Conference on Machine Learning, pages 10358–10368. PMLR, 2021.



Motivation
• Suppose: 
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Oracle 
𝑔 .  lies within the parametric family of Surrogate

𝑔 . ; 𝝎∗

there must exist a perturbation neighborhood 

of                        that contains
Surrogate
𝑔 . ; 𝝎∗

Oracle 
𝑔 .  

+ Noise
Oracle 𝑔 .  

Surrogate 𝑔 . ; 𝝎∗

Perturbation neighborhood 
of surrogate

Noise vector to obtain 
oracle from surrogate



Motivation
• Suppose:
    Prediction of 𝑔 . ; 𝝎∗ + 𝜹        do not change substantially on 
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Oracle 𝑔 .  

Surrogate 𝑔 . ; 𝝎∗

Perturbation neighborhood 
of surrogate

Perturbed surrogate
𝑔 . ; 𝝎∗ + 𝜹

+𝜹

Surrogate’s prediction ≈ Oracle’s prediction

Find surrogate s.t. worst-case prediction change across the 
perturbation neighborhood is sufficiently small.



Surrogate sharpness
• Surrogate sharpness:

ℛ𝒳 𝝎 = max
𝜹 2<𝜌

𝔼𝑥∈𝒳 𝑔 𝑥; 𝝎 + 𝜹 −𝔼𝑥∈𝒳 𝑔 𝑥; 𝝎

• This can be used to regularize surrogate training:
𝝎∗ = argmin

𝝎
ℒ𝔇 𝝎       s.t.     ℛ𝒳 𝝎 ≤ 𝜖′
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Surrogate sharpness
• We proved in Theorem 2 that

ℛ𝒳 𝝎 ≤ 𝜌𝐺 𝝎 +
1

2
𝜌2𝜆𝑚𝑎𝑥 . ℛ𝒟 𝝎 + 𝒪

dim 𝝎 log 𝑛 𝝎 2

𝑛

where 𝐺 𝝎 = 𝔼𝑥∈𝒳 ∇𝝎𝑔 𝑥; 𝝎  and 𝜆𝑚𝑎𝑥 is largest eigenvalue of 
Hessian of the surrogate’s expected prediction.

This can transform the constraint:
𝝎∗ = argmin

𝝎
ℒ𝔇 𝝎       s.t.     ℛ𝒟 𝝎 ≤ ϵ
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Practical Algorithms
• Let ℎ 𝝎 + 𝜹 = 𝔼𝑥∈𝒟 𝑔 𝑥; 𝝎 + 𝜹 , ℎ 𝝎 = 𝔼𝑥∈𝒟 𝑔 𝑥; 𝝎

• Use first-order Taylor expansion of ℎ 𝝎 + 𝜹  at 𝝎:
ℛ𝒟 𝝎 = max

𝜹 2<𝜌
𝔼𝑥∈𝒟 𝑔 𝑥; 𝝎 + 𝜹 −𝔼𝑥∈𝒟 𝑔 𝑥; 𝝎

             = max
𝜹 2<𝜌

ℎ 𝝎 + 𝜹 −ℎ 𝝎 ≈ max
𝜹 2<𝜌

∇𝝎ℎ 𝝎 𝑇𝜹

• Use the Cauchy-Schwartz inequality:
ℛ𝒟 𝝎 ≈ max

𝜹 2<𝜌
∇𝝎ℎ 𝝎 𝑇𝜹 = max

𝜹 2<𝜌
∇𝝎ℎ 𝝎 . 𝜹 = 𝜌. ∇𝝎ℎ 𝝎

• Surrogate training can be rewritten as:
𝝎∗ = argmin

𝝎
ℒ𝔇 𝝎     s.t.  𝜌. ∇𝝎ℎ 𝝎 ≤ ϵ

• This can be solved via Lagrangian:
𝝎∗ = argmin

𝝎
ℒ 𝝎, 𝜆    where   ℒ 𝝎, 𝜆 = ℒ𝔇 𝝎 + 𝜆 𝜌. ∇𝝎ℎ 𝝎 − ϵ
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Practical Algorithms
• Utilize the basic differential multiplier method (BDMM)[3], 

which simultaneously:

• Gradient descent for 𝝎:

𝝎𝑡+1 = 𝝎𝑡 − 𝜂𝝎. ∇𝝎ℒ𝔇 𝝎 + 𝜆𝑡 . 𝜌. ∇𝝎 ∇𝝎ℎ 𝝎𝑡

• Gradient ascent for 𝜆:

𝜆𝑡+1= 𝜆𝑡 + 𝜂𝜆. 𝜌. ∇𝝎ℎ 𝝎 − ϵ

         We name this method IGNITE.

9[3] John Platt and Alan Barr. Constrained differential optimization. In Neural Information Processing Systems, 1987



Experiments
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IMPROVE: 
• 79.55% = 35/44 cases
• Average improvement: 1.91% 
• Peak improvement: 9.6%.

DECREASE: 
• 9.09% = 4/44 cases
• Average degradation: 0.3% 
• Peak degradation: 0.7%.

MAINTAIN:
• 11.36% = 5/44 cases
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