-1 Compress activations by projected

| - by dividing and projecting the
mmm tokens during the forward pass.

group(-) compress(- ; v)
Z)ZEIR,BXND/MXM >Zp€IR,BXND/MX1

Compress activations by first dividing the activations into sub-tokens and then
computing their cosine similarity to a frozen vector v. The sub-token size can control the

2 - Cheap and coarse reconstruction

- - during the backwards pass.

TLDR;

level of compression and subsequently the memory reduction for training.

Y

update rule
oL
Oy
; LoRA, Hydra, etc.
W
Adapter Qﬂ,
grad input

Z

Reconstruct an approximation of the original activations by projecting back onto v.

Z

forward
pass

backward
pass

Through careful initialization for v, we can preserve a lot of structural information
needed for good convergence and model performance.

Zyp,

reconstruct(- ; v) . ungroup(-)
>Z€IRBXND/MXM S

P

Z = BBXNXD

3

Result: Significant memory
reduction for both fine-tuning

—' and pre-training LLMs!

Query Key Value Down | Memory (GB) Acc Layer Selection
v o :'i 22; VeloRA is most
v | 42 36.2 effective on the
v 1.42 36.7 down projection
v 1.01 38.9
layers where the
v v 1.18 37.4 , .
v v 0.76 30.5 Input activations
v v v 0.51 38.4
v v v v 0.24 37.0 are large.
Convergence
1 Despite approximating
Epochs QLoRA VeLoRA the gradients, we find that
1 36.4 36.7 VelLoRA does not impact
2 37.3 37.5 the training converge for
3 38.4 38.1 pre-training or fine-
4 39.1 39.5 tuning.
Sub-Token Si
M Memory (MB) Acc AT TORER S12E
Sub-token size
D /64 865 37.9 provides a way of
D /32 808 39.5 tuning the memory
giéﬁ ggz ggg v.S. performance
) trade-off.
Initialization
Method Acc
Initialization strategy for v is
Random 36.8 important for maintaining
S}"’D 37.1 good performance. We find
Fixed average 39.5 a simple batch average is
Running average 38.9

very effective.

y=Wx+ ABx = (W + AB)x

Following common practice and the derivation given by
FLoRA [1], we can express the update as:

e+ a0 (50~ o) =[]

LoRA does induce low-rank gradient updates.

For simplicity, consider the case of a single sub-token.
VelLoRA projects this sub-token using a fixed rank-1 projection.

W= e [

VelLoRA can be seen through the lens of LoRA using a data-driven
initialization for A.

60M 130M
Full-Rank 33.52 (1.30G) 25.08 (2.320G) LLaMA Size 7B 13B Mean
Gal ore 34.88 (1.27G) 25.36 (2.02G) Method Alpaca Memory Alpaca Memory
LoRA 34.99 (0.86G) 33.92 (1.24G) LoRA w/ BFloatl6 38.4 8.79 47.2 15.82 428
FLoRA 34.35(1.27G) 25.88 (2.01G) LoRA w/ Float4 37.2 5.77 473 9.91 423
VelLoRA 33.76 (1.18G) 25.29 (1.83G) QLoRA 39.0 5.77 47.5 9.91 43.3

+ VeLoRA 39.5 4.88 48.0 8.48 43.8

T /dmodel 128 /256 256 /768
Training Tokens 1.1B 2.2B

We confirm the effectiveness of our algorithm as being complimentary to many state-
of-the-art PEFT methods on the VTAB-1k fine-tuning benchmark. Furthermore, we
outperform QLoRA for fine-tuning LLaMA and show competitive performance against
other memory-efficient pre-training methods on the large-scale C4 dataset.

TRl el Siyivtisdigeii] 2
et gt ol As 13
- =i J%. 44 -
- v
et % g-;{ RHE A prad s L3y
P a8 WAl ey - :

% a. = e 13 i3
' o i § B Sudi BIERREG
s = T 3 ¢ FUINH |F

= TN S |

ETETRCs tres YiApEatrab I S

5 - 3 ey 1 1 Teilags
i} T o Tt e e R T itma i

3 sl ol La - VSLT sl ol La - (3L I
: e preiree Vi -%&.—}:L ::3;-,& (- 2re b Tie Vi Eoa ity et

-

: 3 =

niia
{850 Sst ISHS]

Algorithm 1 VeLoRA, Pytorch-like

[1] T. Dettmers, et. al. Qlora: Efficient i Sl ey Tl O
finetuning of quantized lims. NeurlPS 2023

forward compute is preserved
out = input @ weight

[2] E. J. Hu, et. al. Lora: Low-rank adaptation
of large language models. ICLR 2022.

compute vector similarity
z = compress (group(input), v)

save_for_backward(z, weight, v)
return out

[3] Y. Hao, et. al. Flora: Low-rank adapters

def backward(ctx, grad_output):

are secretly gradient compressors, 2024. z, weight, v = saved_tensors
ICML 2024 # reconstruct the input

input = ungroup(reconstruct(z, v))

compute gradients
grad_input = grad_output @ weight
grad_weight = grad_output.T @ input

Implementation is quite simple!

return grad_input, grad_weight

