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Background Comparing	to	Models	with	Continual	Training
ØWith the blooming of LLM-driven applications, such as agent
construction and embodied robotics, enhancing the capability of
LLMs to process streaming long sequences become increasingly
crucial.

Ø InfLLM = Sliding Window + Block-Level Context Memory
Ø InfLLM organizes past key-value vectors into blocks, named as memory
unit, each containing a continuous token sequence

ØRepresentative Tokens: Within each block, the semantically most
significant tokens that receive the highest attention scores are selected as the
unit representation for subsequent relevance computation in memory lookup

ØOffloading: InfLLM offloads all units on CPU memory and dynamically
retains the frequently used units on GPU memory

Ø Compared to Llama-3-8B-Instruct-Gradient-1048k (Llama-1M), InfLLM
can achieve comparable without any additional training.

Ø InfLLM achieves a 34% decrease in time consumption while using
only 34% of the GPU memory compared to the Llama-1M.

Ø InfLLM can be directly combined with Llama-1M to further improve the
performance.
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Many real-world applications require LLMs to process extremely
long sequences

LLM-driven agents make decisions based
on long historical memories

Reading academic papers spanning 
hundreds of pages with LLMs
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Ø Sliding window attention can enable LLMs to process streaming
long sequences. However, as it discards all distant context, sliding
window attention will suffer from catastrophic forgetting issue.

ØOur Goal: Building a context memory to save evicted tokens,
training-free extending the context window without forgetting
distant contexts.

Full Attention Sliding Window InfLLM
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Methodology

Main Results
Ø InfLLM can achieve superior performance with limited computation.

Scaling to 1024K Context
Ø InfLLM can extend the context
window size of Mistral and
achieve 100% accuracy on
passkey retrieval task.

Comparing to RAG
InfLLM has following advantages:
Ø Training-Free: RAG requires
additional retrieval data to train a
retrieval model.

Ø Broader Applicability: RAG models are usually limited by the
performance of their retrieval components. Besides, existing retrieval
models will suffer from out-of-distribution issues.


